On the rank of the elliptic curve y2 = x3 + kx.: II

被引:1
作者
Kihara, S [1 ]
机构
[1] Univ Tokushima, Sch Med, Dept Neuropsychiat, Tokushima 7708503, Japan
关键词
elliptic curve; rank;
D O I
10.3792/pjaa.80.24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an elliptic curve of the form y(2) = x(3) + kx with rank at least 6 over Q(x(1), x(2), x(3)).
引用
收藏
页码:24 / 25
页数:2
相关论文
共 50 条
[21]   LANG'S CONJECTURE AND SHARP HEIGHT ESTIMATES FOR THE ELLIPTIC CURVES y2 = x3 + ax [J].
Voutier, Paul ;
Yabuta, Minoru .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) :1141-1170
[22]   Elliptic Curves of Type y2 = x3 - 3pqx Having Ranks Zero and One [J].
Mina, R. J. S. ;
Bacani, J. B. .
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01) :67-76
[23]   Lang's conjecture and sharp height estimates for the elliptic curves y2 = x3 + b [J].
Voutier, Paul ;
Yabuta, Minoru .
ACTA ARITHMETICA, 2016, 173 (03) :197-224
[24]   On the Birch-Swinnerton-Dyer Conjecture of Elliptic Curves ED : y2 = x3 - D2x [J].
Li D. ;
Tian Y. .
Acta Mathematica Sinica, 2000, 16 (2) :229-236
[25]   The Integral Points on the Elliptic Curve y2=3mx(x2-8) [J].
Fei, Wan ;
Zhao, Jianhong .
2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
[26]   An exact upper bound estimate for the number of integer points on the elliptic curves y2=x3−pkx [J].
Su Gou ;
Xiaoxue Li .
Journal of Inequalities and Applications, 2014
[27]   An exact upper bound estimate for the number of integer points on the elliptic curves y2 = x3 - pkx [J].
Gou, Su ;
Li, Xiaoxue .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[28]   A note on the trace of Frobenius for curves of the form y2 = x3 [J].
Walsh, P. G. .
ANNALES MATHEMATICAE ET INFORMATICAE, 2022, 55 :184-188
[29]   THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x(3) [J].
Jeon, Wonju ;
Kim, Daeyeoul .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03) :433-447
[30]   On the Group of the Elliptic Curve y(2) = x(3) [J].
Zamani, Naser ;
Shams, Arman .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 8 (01) :126-134