Exponential localization in one-dimensional quasi-periodic optical lattices

被引:170
|
作者
Modugno, Michele [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, LENS, I-50019 Sesto Fiorentino, Italy
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
METAL-INSULATOR-TRANSITION; ANDERSON LOCALIZATION; SOLVABLE MODEL; MOTION; ATOMS;
D O I
10.1088/1367-2630/11/3/033023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight-binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre model, and provide evidence on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on the Anderson localization of a noninteracting Bose-Einstein condensate in a quasi-periodic optical lattice (Roati et al 2008 Nature 453 895).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [2] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [3] Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices
    Radosavljevic, Ana
    Gligoric, Goran
    Maluckov, Aleksandra
    Stepic, Milutin
    JOURNAL OF OPTICS, 2014, 16 (02)
  • [4] Reducibility of one-dimensional quasi-periodic Schrodinger equations
    Geng, Jiansheng
    Zhao, Zhiyan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03): : 436 - 453
  • [5] Mobility edges in one-dimensional models with quasi-periodic disorder
    Tang, Qiyun
    He, Yan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (18)
  • [6] Longitudinal wave propagation in a one-dimensional quasi-periodic waveguide
    Sorokin, Vladislav S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2231):
  • [7] Ballistic transport in one-dimensional quasi-periodic continuous Schrodinger equation
    Zhao, Zhiyan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) : 4523 - 4566
  • [8] Disorderless Quasi-localization of Polar Gases in One-Dimensional Lattices
    Li, W.
    Dhar, A.
    Deng, X.
    Kasamatsu, K.
    Barbiero, L.
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [9] Localization-delocalization transition in self-dual quasi-periodic lattices
    Sun, M. L.
    Wang, G.
    Li, N. B.
    Nakayama, T.
    EPL, 2015, 110 (05)
  • [10] Anderson localization for the discrete one-dimensional quasi-periodic Schrodinger operator with potential defined by a Gevrey-class function
    Klein, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (02) : 255 - 292