First-order optical spatial differentiator based on a guided-mode resonant grating

被引:88
作者
Bykov, Dmitry A. [1 ,2 ]
Doskolovich, Leonid L. [1 ,2 ]
Morozov, Andrey A. [1 ,2 ]
Podlipnov, Vladimir V. [1 ,2 ]
Bezus, Evgeni A. [1 ,2 ]
Verma, Payal [2 ,3 ]
Soifer, Victor A. [1 ,2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Branch Fed Sci, Res Ctr Crystallog & Photon, 151 Molodogvardeyskaya St, Samara 443001, Russia
[2] Samara Natl Res Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
[3] Dayananda Sagar Univ, Dept Elect & Commun Engn, Bangalore 560068, Karnataka, India
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
LAPLACE OPERATOR; FORMULATION; SLAB;
D O I
10.1364/OE.26.010997
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an experimental demonstration of a subwavelength diffraction grating performing first-order differentiation of the transverse profile of an incident optical beam with respect to a spatial variable. The experimental results are in a good agreement with the presented analytical model suggesting that the differentiation is performed in transmission at oblique incidence and is associated with the guided-mode resonance of the grating. According to this model, the transfer function of the grating in the vicinity of the resonance is close to the transfer function of an exact differentiator. We confirm this by estimating the transfer function of the fabricated structure on the basis of the measured profiles of the incident and transmitted beams. The considered structure may find application in the design of new photonic devices for beam shaping, optical information processing, and analog optical computing. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10997 / 11006
页数:10
相关论文
共 19 条
[1]   Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting [J].
Bykov, Dmitry A. ;
Doskolovich, Leonid L. ;
Soifer, Victor A. .
OPTICS EXPRESS, 2017, 25 (02) :1151-1164
[2]   ω - kx Fano line shape in photonic crystal slabs [J].
Bykov, Dmitry A. ;
Doskolovich, Leonid L. .
PHYSICAL REVIEW A, 2015, 92 (01)
[3]   Optical computation of the Laplace operator using phase-shifted Bragg grating [J].
Bykov, Dmitry A. ;
Doskolovich, Leonid L. ;
Bezus, Evgeni A. ;
Soifer, Victor A. .
OPTICS EXPRESS, 2014, 22 (21) :25084-25092
[4]   Spatial differentiation of optical beams using phase-shifted Bragg grating [J].
Doskolovich, Leonid L. ;
Bykov, Dmitry A. ;
Bezus, Evgeni A. ;
Soifer, Victor A. .
OPTICS LETTERS, 2014, 39 (05) :1278-1281
[5]   Resonant diffraction gratings for spatial differentiation of optical beams [J].
Golovastikov, N. V. ;
Bykov, D. A. ;
Doskolovich, L. L. .
QUANTUM ELECTRONICS, 2014, 44 (10) :984-988
[6]  
Goodman J, 1968, Introduction to Fourier optics
[7]   Photonic crystal slab Laplace operator for image differentiation [J].
Guo, Cheng ;
Xiao, Meng ;
Minkov, Momchil ;
Shi, Yu ;
Fan, Shanhui .
OPTICA, 2018, 5 (03) :251-256
[8]   Plasmonic circuit for second-order spatial differentiation at the subwavelength scale [J].
Hwang, Yongsop ;
Davis, Timothy J. ;
Lin, Jiao ;
Yuan, Xiao-Cong .
OPTICS EXPRESS, 2018, 26 (06) :7368-7375
[9]   Optical metasurfaces for subwavelength difference operations [J].
Hwang, Yongsop ;
Davis, Timothy J. .
APPLIED PHYSICS LETTERS, 2016, 109 (18)
[10]   Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings [J].
Li, LF .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05) :1024-1035