Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form

被引:14
作者
Abedin, Farhan [1 ]
Tralli, Giulio [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[2] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
D O I
10.1007/s00205-019-01370-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove invariant Harnack inequalities for certain classes of non-divergence form equations of Kolmogorov type. The operators we consider exhibit invariance properties with respect to a homogeneous Lie group structure. The coefficient matrix is assumed either to satisfy a Cordes-Landis condition on the eigenvalues, or to admit a uniform modulus of continuity.
引用
收藏
页码:867 / 900
页数:34
相关论文
共 33 条
[11]  
Gualdani M, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-018-1451-6
[12]  
GUTIERREZ CE, 1960, DIFFER EQU, V36, P2103, DOI DOI 10.1080/03605302.2011.618210
[13]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[14]  
Imbert C., J EUR MATH SOC JEMS
[15]   WIENER-LANDIS CRITERION FOR KOLMOGOROV-TYPE OPERATORS [J].
Kogoj, Alessia E. ;
Lanconelli, Ermanno ;
Tralli, Giulio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) :2467-2485
[16]   Random Fluctuations (Regarding the Theory of Brownian Motion) [J].
Kolmogoroff, A .
ANNALS OF MATHEMATICS, 1934, 35 :116-117
[17]  
Krylov N. V., 1980, IZV AKAD NAUK SSSR M, V44, P161
[18]   FUNDAMENTAL-SOLUTIONS OF CERTAIN DEGENERATE 2ND-ORDER PARABOLIC EQUATIONS [J].
KUPTSOV, LP .
MATHEMATICAL NOTES, 1982, 31 (3-4) :283-289
[19]  
Lanconelli A., ARXIV170407307PDF
[20]   Nash Estimates and Upper Bounds for Non-homogeneous Kolmogorov Equations [J].
Lanconelli, Alberto ;
Pascucci, Andrea .
POTENTIAL ANALYSIS, 2017, 47 (04) :461-483