Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form

被引:14
作者
Abedin, Farhan [1 ]
Tralli, Giulio [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[2] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
D O I
10.1007/s00205-019-01370-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove invariant Harnack inequalities for certain classes of non-divergence form equations of Kolmogorov type. The operators we consider exhibit invariance properties with respect to a homogeneous Lie group structure. The coefficient matrix is assumed either to satisfy a Cordes-Landis condition on the eigenvalues, or to admit a uniform modulus of continuity.
引用
收藏
页码:867 / 900
页数:34
相关论文
共 33 条
[1]   Harnack's inequality for a class of non-divergent equations in the Heisenberg group [J].
Abedin, Farhan ;
Gutierrez, Cristian E. ;
Tralli, Giulio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (10) :1644-1658
[2]   On the Landau approximation in plasma physics [J].
Alexandre, R ;
Villani, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :61-95
[3]  
BARLES G., 1997, NUMERICAL METHODS FI, P1
[4]   Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials [J].
Cameron, Stephen ;
Silvestre, Luis ;
Snelson, Stanley .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03) :625-642
[5]  
CHANDRASEKHAR S, 2000, RVMP, V15, P1, DOI DOI 10.1103/RevModPhys.15.1
[6]   Pointwise estimates for a class of non-homogeneous Kolmogorov equations [J].
Cinti, Chiara ;
Pascucci, Andrea ;
Polidoro, Sergio .
MATHEMATISCHE ANNALEN, 2008, 340 (02) :237-264
[7]   Density estimates for a random noise propagating through a chain of differential equations [J].
Delarue, Francois ;
Menozzi, Stephane .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) :1577-1630
[8]  
Di Francesco M, 2006, ADV DIFFERENTIAL EQU, V11, P1261
[9]   LEVEL SETS OF THE FUNDAMENTAL SOLUTION AND HARNACK INEQUALITY FOR DEGENERATE EQUATIONS OF KOLMOGOROV TYPE [J].
GAROFALO, N ;
LANCONELLI, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) :775-792
[10]  
Glagoleva R.Ya., 1968, Mat. Sb, V76, P167