Harnack inequality for a class of Kolmogorov-Fokker-Planck equations in non-divergence form

被引:14
作者
Abedin, Farhan [1 ]
Tralli, Giulio [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[2] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
D O I
10.1007/s00205-019-01370-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove invariant Harnack inequalities for certain classes of non-divergence form equations of Kolmogorov type. The operators we consider exhibit invariance properties with respect to a homogeneous Lie group structure. The coefficient matrix is assumed either to satisfy a Cordes-Landis condition on the eigenvalues, or to admit a uniform modulus of continuity.
引用
收藏
页码:867 / 900
页数:34
相关论文
共 33 条
  • [1] Harnack's inequality for a class of non-divergent equations in the Heisenberg group
    Abedin, Farhan
    Gutierrez, Cristian E.
    Tralli, Giulio
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (10) : 1644 - 1658
  • [2] On the Landau approximation in plasma physics
    Alexandre, R
    Villani, C
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01): : 61 - 95
  • [3] BARLES G., 1997, NUMERICAL METHODS FI, P1
  • [4] Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials
    Cameron, Stephen
    Silvestre, Luis
    Snelson, Stanley
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 625 - 642
  • [5] CHANDRASEKHAR S, 2000, RVMP, V15, P1, DOI DOI 10.1103/RevModPhys.15.1
  • [6] Pointwise estimates for a class of non-homogeneous Kolmogorov equations
    Cinti, Chiara
    Pascucci, Andrea
    Polidoro, Sergio
    [J]. MATHEMATISCHE ANNALEN, 2008, 340 (02) : 237 - 264
  • [7] Density estimates for a random noise propagating through a chain of differential equations
    Delarue, Francois
    Menozzi, Stephane
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1577 - 1630
  • [8] Di Francesco M, 2006, ADV DIFFERENTIAL EQU, V11, P1261
  • [9] LEVEL SETS OF THE FUNDAMENTAL SOLUTION AND HARNACK INEQUALITY FOR DEGENERATE EQUATIONS OF KOLMOGOROV TYPE
    GAROFALO, N
    LANCONELLI, E
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) : 775 - 792
  • [10] Glagoleva R.Ya., 1968, Mat. Sb, V76, P167