Localized chaotic patterns in weakly dissipative systems

被引:17
作者
Urzagasti, D. [1 ]
Laroze, D. [1 ,2 ]
Pleiner, H. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
关键词
PARAMETRICALLY DRIVEN; SOLITONS; EXPONENTS; SNAKING;
D O I
10.1140/epjst/e2014-02089-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized parametrically driven damped nonlinear Schrodinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 70 条
[11]   Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation [J].
Barashenkov, IV ;
Cross, S ;
Malomed, BA .
PHYSICAL REVIEW E, 2003, 68 (05)
[12]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[13]   Spatially localized binary-fluid convection [J].
Batiste, Oriol ;
Knobloch, Edgar ;
Alonso, Arantxa ;
Mercader, Isabel .
JOURNAL OF FLUID MECHANICS, 2006, 560 :149-158
[14]   Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit [J].
Bonatto, Cristian ;
Gallas, Jason A. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[15]   Chaotic dynamics of a magnetic nanoparticle [J].
Bragard, J. ;
Pleiner, H. ;
Suarez, O. J. ;
Vargas, P. ;
Gallas, J. A. C. ;
Laroze, D. .
PHYSICAL REVIEW E, 2011, 84 (03)
[16]   INTERACTION OF LOCALIZED SOLUTIONS FOR SUBCRITICAL BIFURCATIONS [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (26) :2801-2804
[17]   STABLE LOCALIZED SOLUTIONS IN NONLINEAR OPTICS WITH LARGE DISSIPATION [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICA A, 1994, 204 (1-4) :87-95
[18]   Classification of Spatially Localized Oscillations in Periodically Forced Dissipative Systems [J].
Burke, J. ;
Yochelis, A. ;
Knobloch, E. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (03) :651-711
[19]   Homoclinic snaking: Structure and stability [J].
Burke, John ;
Knobloch, Edgar .
CHAOS, 2007, 17 (03)
[20]   Localized states in the generalized Swift-Hohenberg equation [J].
Burke, John ;
Knobloch, Edgar .
PHYSICAL REVIEW E, 2006, 73 (05)