The Weight Distribution of Some Irreducible Cyclic Codes

被引:65
作者
Ding, Cunsheng [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R China
关键词
Cyclotomy; Gaussian periods; irreducible cyclic codes; linear codes; PERIOD POLYNOMIALS; SUMS;
D O I
10.1109/TIT.2008.2011511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Irreducible cyclic codes have been an interesting subject of study for a long time. Their weight distribution is known in only a few cases. In this paper, the weight distribution of the irreducible cyclic codes in a number of other cases is determined. The number of nonzero weights in the codes dealt with in this paper varies between one and four.
引用
收藏
页码:955 / 960
页数:6
相关论文
共 20 条
[1]  
Aubry Y., 2005, P WORKSH COD CRYPT N, V3969, P161
[2]  
Baumert L.D., 1973, DSN Progr. Rep, V16, P128
[3]   WEIGHTS OF IRREDUCIBLE CYCLIC CODES [J].
BAUMERT, LD ;
MCELIECE, RJ .
INFORMATION AND CONTROL, 1972, 20 (02) :158-&
[4]  
Delsarte P., 1970, P 2 CHAPEL HILL C CO, P100
[5]   Complex codebooks from combinatorial designs [J].
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) :4229-4235
[6]   FACTORIZATION OF CYCLIC CODES [J].
GOETHALS, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (02) :242-+
[7]  
Gurak SJ, 2004, CRM PROC & LECT NOTE, V36, P127
[8]   WEIGHT DISTRIBUTION OF IRREDUCIBLE CYCLIC CODES WITH BLOCK LENGTHS N1((Q1-1)-N) [J].
HELLESETH, T ;
KLOVE, T ;
MYKKELTVEIT, J .
DISCRETE MATHEMATICS, 1977, 18 (02) :179-211
[9]   Explicit lifts of quintic Jacobi sums and period polynomials Fq [J].
Hoshi, Akinari .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2006, 82 (07) :87-92
[10]  
LANGEVIN P, 1996, FINITE FIELDS APPL, P181