Combing Triple-Part Features of Convolutional Neural Networks for Scene Classification in Remote Sensing

被引:50
作者
Huang, Hong [1 ]
Xu, Kejie [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
关键词
high spatial resolution; remote sensing; scene classification; convolutional neural networks; feature encoding; feature fusion; SEMANTIC SEGMENTATION; BINARY PATTERNS; IMAGES; AID;
D O I
10.3390/rs11141687
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High spatial resolution remote sensing (HSRRS) images contain complex geometrical structures and spatial patterns, and thus HSRRS scene classification has become a significant challenge in the remote sensing community. In recent years, convolutional neural network (CNN)-based methods have attracted tremendous attention and obtained excellent performance in scene classification. However, traditional CNN-based methods focus on processing original red-green-blue (RGB) image-based features or CNN-based single-layer features to achieve the scene representation, and ignore that texture images or each layer of CNNs contain discriminating information. To address the above-mentioned drawbacks, a CaffeNet-based method termed CTFCNN is proposed to effectively explore the discriminating ability of a pre-trained CNN in this paper. At first, the pretrained CNN model is employed as a feature extractor to obtain convolutional features from multiple layers, fully connected (FC) features, and local binary pattern (LBP)-based FC features. Then, a new improved bag-of-view-word (iBoVW) coding method is developed to represent the discriminating information from each convolutional layer. Finally, weighted concatenation is employed to combine different features for classification. Experiments on the UC-Merced dataset and Aerial Image Dataset (AID) demonstrate that the proposed CTFCNN method performs significantly better than some state-of-the-art methods, and the overall accuracy can reach 98.44% and 94.91%, respectively. This indicates that the proposed framework can provide a discriminating description for HSRRS images.
引用
收藏
页数:23
相关论文
共 79 条
[1]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[2]   Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification [J].
Anwer, Rao Muhammad ;
Khan, Fahad Shahbaz ;
van de Weijer, Joost ;
Molinier, Matthieu ;
Laaksonen, Jorma .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 :74-85
[3]   Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community [J].
Ball, John E. ;
Anderson, Derek T. ;
Chan, Chee Seng .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
[4]   Fusing Local and Global Features for High-Resolution Scene Classification [J].
Bian, Xiaoyong ;
Chen, Chen ;
Tian, Long ;
Du, Qian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) :2889-2901
[5]   Deep Feature Fusion for VHR Remote Sensing Scene Classification [J].
Chaib, Souleyman ;
Liu, Huan ;
Gu, Yanfeng ;
Yao, Hongxun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4775-4784
[6]   Remote Sensing Scene Classification Based on Convolutional Neural Networks Pre-Trained Using Attention-Guided Sparse Filters [J].
Chen, Jingbo ;
Wang, Chengyi ;
Ma, Zhong ;
Chen, Jiansheng ;
He, Dongxu ;
Ackland, Stephen .
REMOTE SENSING, 2018, 10 (02)
[7]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[8]   Multi-class geospatial object detection and geographic image classification based on collection of part detectors [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Guo, Lei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 :119-132
[9]   Multi-scale object detection in remote sensing imagery with convolutional neural networks [J].
Deng, Zhipeng ;
Sun, Hao ;
Zhou, Shilin ;
Zhao, Juanping ;
Lei, Lin ;
Zou, Huanxin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 :3-22
[10]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871