Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold

被引:296
作者
Xin, Xuejun [1 ]
Hussain, Mohammad [1 ]
Mao, Jeremy J. [1 ]
机构
[1] Columbia Univ, Coll Dent Med, Fu Fdn Sch Engn & Appl Sci, Dept Biomed Engn, New York, NY 10032 USA
关键词
nanofibers; stem cell; electrospinning; scaffold; tissue engineering; TISSUE ENGINEERING SCAFFOLDS; MARROW STROMAL CELLS; SMOOTH-MUSCLE-CELL; EXTRACELLULAR-MATRIX; ARTICULAR-CARTILAGE; IN-VITRO; MECHANICAL-PROPERTIES; POLYMER; MORPHOLOGY; PROLIFERATION;
D O I
10.1016/j.biomaterials.2006.08.042
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Nanofibers have recently gained substantial interest for potential applications in tissue engineering. The objective of this study was to determine whether electrospun nanofibers accommodate the viability, growth, and differentiation of human mesenchymal stem cells (hMSCs) as well as their osteogenic (hMSC-Ob) and chondrogenic (hMSC-Ch) derivatives. Poly(D,L-lactide-co-glycolide) (PLGA) beads with a PLA:PGA ratio of 85:15 were electrospun into non-woven fibers with an average diameter of 760 +/- 210 nm. The average Young's modulus of electrospun PLGA nanofibers was 42 +/- 26kPa, per nanoindentation with atomic force microscopy (AFM). Human MSCs were seeded 1 - 4 weeks at a density of 2 x 10(6) cells/mL in PLGA nanofiber sheets. After 2 week culture on PLGA nanofiber scaffold, hMSCs remained as precursors upon immunoblotting with hKL12 antibody. SEM taken up to 7 days after cell seeding revealed that hMSCs, hMSC-Ob and hMSC-Ch apparently attached to PLGA nanofibers. The overwhelming majority of hMSCs was viable and proliferating in PLGA nanofiber scaffolds up to the tested 14 days, as assayed live/dead tests, DNA assay and BrdU. In a separate experiment, hMSCs seeded in PLGA nanofiber scaffolds were differentiated into chodrogenic and osteogenic cells. Histological assays revealed that hMSCs continuously differentiated into chondrogenic cells and osteogenic cells after 2 week incubation in PLGA nanofibers. Taken together, these data represent an original investigation of continuous differentiation of hMSCs into chondrogenic and osteogenic cells in PLGA nanofiber scaffold. Consistent with previous work, these findings also suggest that nanofibers may serve as accommodative milieu for not only hMSCs, but also as a 3D carrier vehicle for lineage specific cells. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:316 / 325
页数:10
相关论文
共 74 条
[1]  
Agrawal CM, 2001, J BIOMED MATER RES, V55, P141, DOI 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO
[2]  
2-J
[3]   Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: Implications in soft tissue augmentation and reconstruction [J].
Alhadlaq, A ;
Tang, M ;
Mao, JJ .
TISSUE ENGINEERING, 2005, 11 (3-4) :556-566
[4]  
Alhadlaq A, 2004, STEM CELLS DEV, V13, P436, DOI 10.1089/scd.2004.13.436
[5]   Adult stem cell driven genesis of human-shaped articular condyle [J].
Alhadlaq, A ;
Elisseeff, JH ;
Hong, L ;
Williams, CG ;
Caplan, AI ;
Sharma, B ;
Kopher, RA ;
Tomkoria, S ;
Lennon, DP ;
Lopez, A ;
Mao, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (07) :911-923
[6]   Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy [J].
Allen, DM ;
Mao, JJ .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 145 (03) :196-204
[7]   Influence of systematically varied nanoscale topography on the morphology of epithelial cells [J].
Andersson, AS ;
Brink, J ;
Lidberg, U ;
Sutherland, DS .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2003, 2 (02) :49-57
[8]   Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers [J].
Athanasiou, KA ;
Niederauer, GG ;
Agrawal, CM .
BIOMATERIALS, 1996, 17 (02) :93-102
[9]   Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates [J].
Badami, AS ;
Kreke, MR ;
Thompson, MS ;
Riffle, JS ;
Goldstein, AS .
BIOMATERIALS, 2006, 27 (04) :596-606
[10]   ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS [J].
BAUMGARTEN, PK .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 36 (01) :71-+