On a conjecture of Foulkes

被引:13
作者
Dent, SC [1 ]
Siemens, J [1 ]
机构
[1] Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
10.1006/jabr.1999.8169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that Omega = {1, 2,..., ab} for some non-negative integers a and b. Denote hv P(a, b) the set of unordered partitions of Omega into a parts of cardinality b. In this paper we study the decomposition of the permutation module CP(3, b) where C is the field of complex numbers. in particular, we show that CP(b,3) bf is isomorphic to a submodule of CP(b,3) for b greater than or equal to 3. This settles the next unproven case of a conjecture of Foulkes. (C) 2000 Academic Press.
引用
收藏
页码:236 / 249
页数:14
相关论文
共 17 条
[1]   A NOTE ON PLETHYSM [J].
BLACK, SC ;
LIST, RJ .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (01) :111-112
[2]   STABLE PROPERTIES OF PLETHYSM - ON 2 CONJECTURES OF FOULKES [J].
BRION, M .
MANUSCRIPTA MATHEMATICA, 1993, 80 (04) :347-371
[3]  
Cayley A., 1879, AM J MATH, V2, P71
[4]   A PROBLEM RELATED TO FOULKES CONJECTURE [J].
COKER, C .
GRAPHS AND COMBINATORICS, 1993, 9 (02) :117-134
[5]  
DENT SC, 1997, THESIS SCH MATH NORW
[6]  
FOULKES H., 1950, J LOND MATH SOC, V25, P205
[7]   (GLN,GLM)-DUALITY AND SYMMETRIC PLETHYSM [J].
HOWE, R .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1987, 97 (1-3) :85-109
[8]  
James G., 1981, ENCY MATH ITS APPL, V16
[9]  
James G. D., 1978, The Representation Theory of the Symmetric Groups
[10]  
Kerber A., 1991, ALGEBRAIC COMBINATOR