Death-associated protein kinase phosphorylates mammalian ribosomal protein S6 and reduces protein synthesis

被引:26
作者
Schumacher, Andrew M.
Velentza, Anastasia V.
Watterson, D. Martin
Dresios, John
机构
[1] Scripps Res Inst, Dept Neurobiol, La Jolla, CA 92037 USA
[2] Northwestern Univ, Ctr Drug Discovery & Chem Biol, Chicago, IL 60611 USA
关键词
D O I
10.1021/bi060413y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Death-associated protein kinase ( DAPK) is a pro-apoptotic, calcium/calmodulin- regulated protein kinase that is a drug discovery target for neurodegenerative disorders. Despite the potential profound physiological role of DAPK in neuronal function and pathophysiology, the endogenous substrate( s) of this kinase and the mechanisms via which DAPK elicits its biological action remain largely unknown. We report here that the mammalian 40S ribosomal protein S6 is a DAPK substrate. Results from immunoprecipitation experiments are consistent with endogenous DAPK being associated with endogenous S6 in rat brain. When S6 is a component of the 40S ribosomal subunit complex, DAPK selectively phosphorylates it at serine 235, one of the five sites in S6 that are phosphorylated by the S6 kinase family of proteins. The amino acid sequence flanking serine 235 matches the established pattern for DAPK peptide and protein substrates. Kinetic analyses using purified 40S subunits revealed a Km value of 9 AM, consistent with S6 being a potential physiological substrate of DAPK. This enzyme- substrate relationship has functional significance. DAPK suppresses translation in rabbit reticulocyte lysate, and treatment of neuroblastoma cells with a stimulator of DAPK reduces protein synthesis. In both cases, suppression of translation correlates with increased phosphorylation of S6 at serine 235. These results demonstrate that DAPK is a S6 kinase and provide evidence for a novel role of DAPK in the regulation of translation.
引用
收藏
页码:13614 / 13621
页数:8
相关论文
共 48 条
[1]  
BANDI HR, 1993, J BIOL CHEM, V268, P4530
[2]   DISSOCIATION OF MAMMALIAN POLYRIBOSOMES INTO SUBUNITS BY PUROMYCIN [J].
BLOBEL, G ;
SABATINI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (02) :390-&
[3]   The social life of ribosomal proteins [J].
Brodersen, DE ;
Nissen, P .
FEBS JOURNAL, 2005, 272 (09) :2098-2108
[4]  
Brown G E, 1974, Methods Enzymol, V30, P368
[5]   Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK [J].
Chen, CH ;
Wang, WJ ;
Kuo, JC ;
Tsai, HC ;
Lin, JR ;
Chang, ZF ;
Chen, RH .
EMBO JOURNAL, 2005, 24 (02) :294-304
[6]   Aminopyridazines inhibit β-amyloid-induced glial activation and neuronal damage in vivo [J].
Craft, JM ;
Watterson, DM ;
Frautschy, SA ;
Van Eldik, LJ .
NEUROBIOLOGY OF AGING, 2004, 25 (10) :1283-1292
[7]   PROTEIN-SYNTHESIS AND MEMORY - A REVIEW [J].
DAVIS, HP ;
SQUIRE, LR .
PSYCHOLOGICAL BULLETIN, 1984, 96 (03) :518-559
[8]   Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function [J].
Dresios, J ;
Panopoulos, P ;
Synetos, D .
MOLECULAR MICROBIOLOGY, 2006, 59 (06) :1651-1663
[9]   Ribosomal S6 kinase signaling and the control of translation [J].
Dufner, A ;
Thomas, G .
EXPERIMENTAL CELL RESEARCH, 1999, 253 (01) :100-109
[10]  
EDELMAN AM, 1987, ANNU REV BIOCHEM, V56, P567, DOI 10.1146/annurev.biochem.56.1.567