GLOBAL EXISTENCE AND LOW MACH NUMBER LIMIT TO A 3D COMPRESSIBLE MICROPOLAR FLUIDS MODEL IN A BOUNDED DOMAIN

被引:9
作者
Su, Jingrui [1 ,2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
关键词
Compressible micropolar fluids model; global existence; low Mach number limit; bounded domain; MAGNETOHYDRODYNAMIC EQUATIONS; SPHERICAL-SYMMETRY; WELL-POSEDNESS; TIME BEHAVIOR; 3-D FLOW;
D O I
10.3934/dcds.2017145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigating the global existence of strong solutions to the three-dimensional compressible micropolar fluids model in a bounded domain with small initial data. Furthermore, we present the low Mach number limit to the corresponding problem.
引用
收藏
页码:3423 / 3434
页数:12
相关论文
共 50 条
[41]   The vanishing viscosity limit for a 3D model of electro-kinetic fluid in a bounded domain [J].
Jin, Liangbing ;
Fan, Jishan .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :154-157
[42]   BLOW-UP CRITERIA OF SMOOTH SOLUTIONS TO A 3D MODEL OF ELECTRO-KINETIC FLUIDS IN A BOUNDED DOMAIN [J].
Chen, Miaochao ;
Liu, Qilin .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[43]   Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain [J].
Wang, Xiong ;
Liu, Sili .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62
[44]   A Regularity Criterion for the 3D Full Compressible Navier-Stokes-Maxwell System in a Bounded Domain [J].
Fan, Jishan ;
Li, Fucai ;
Nakamura, Gen .
ACTA APPLICANDAE MATHEMATICAE, 2017, 149 (01) :1-10
[45]   EXISTENCE AND UNIQUENESS OF GLOBAL STRONG SOLUTIONS FOR 3D FRACTIONAL COMPRESSIBLE SYSTEMS [J].
Liu, Mengqian ;
Niu, Lei ;
Wu, Zhigang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (35) :1-33
[46]   The 3D Non-isentropic Compressible Euler Equations with Damping in a Bounded Domain [J].
Zhang, Yinghui ;
Wu, Guochun .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (06) :915-928
[47]   On the incompressible and non-resistive limit of 3D compressible magnetohydrodynamic equations in bounded domains [J].
Gu, Xiaoyu ;
Ou, Yaobin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
[48]   Global existence and zero α limit of the 3D incompressible two-fluid MHD equations [J].
Ma, Caochuan ;
Jiang, Zaihong ;
Zhu, Mingxuan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) :5760-5767
[49]   NONEQUILIBRIUM-DIFFUSION LIMIT OF THE COMPRESSIBLE EULER-P1 APPROXIMATION RADIATION MODEL AT LOW MACH NUMBER [J].
Jiang, Song ;
Ju, Qiangchang ;
Liao, Yongkai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) :2491-2522
[50]   LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE INERTIAL QIAN-SHENG MODEL OF LIQUID CRYSTALS: CONVERGENCE FOR CLASSICAL SOLUTIONS [J].
Luo, Yi-Long ;
Ma, Yangjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) :921-966