GLOBAL EXISTENCE AND LOW MACH NUMBER LIMIT TO A 3D COMPRESSIBLE MICROPOLAR FLUIDS MODEL IN A BOUNDED DOMAIN

被引:9
作者
Su, Jingrui [1 ,2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
关键词
Compressible micropolar fluids model; global existence; low Mach number limit; bounded domain; MAGNETOHYDRODYNAMIC EQUATIONS; SPHERICAL-SYMMETRY; WELL-POSEDNESS; TIME BEHAVIOR; 3-D FLOW;
D O I
10.3934/dcds.2017145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigating the global existence of strong solutions to the three-dimensional compressible micropolar fluids model in a bounded domain with small initial data. Furthermore, we present the low Mach number limit to the corresponding problem.
引用
收藏
页码:3423 / 3434
页数:12
相关论文
共 50 条
[21]   On the motion of the 3D compressible micropolar fluids with time periodic external forces [J].
Tan, Zhong ;
Xu, Qiuju .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[22]   Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids [J].
Abels, Helmut ;
Liu, Yadong ;
Nečasová, Šárka .
GAMM Mitteilungen, 2024, 47 (04)
[23]   Uniform global solutions of the 3D compressible MHD system in a bounded domain [J].
Fan, Jishan ;
Sun, Jianzhu ;
Tang, Tong ;
Nakamura, Gen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) :2758-2766
[24]   Global classical solutions for 3D compressible magneto-micropolar fluids without resistivity and spin viscosity in a strip domain [J].
Feng, Zefu ;
Hong, Guangyi ;
Zhu, Changjiang .
SCIENCE CHINA-MATHEMATICS, 2024, 67 (11) :2485-2514
[25]   LOW MACH NUMBER LIMIT OF A COMPRESSIBLE NON-ISOTHERMAL NEMATIC LIQUID CRYSTALS MODEL [J].
樊继山 ;
栗付才 .
Acta Mathematica Scientia, 2019, (02) :449-460
[26]   Low Mach Number Limit of a Compressible Non-Isothermal Nematic Liquid Crystals Model [J].
Jishan Fan ;
Fucai Li .
Acta Mathematica Scientia, 2019, 39 :449-460
[27]   Space-time decay rates for the 3D compressible micropolar fluids system [J].
Wu, Wanping ;
Zhang, Yinghui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
[28]   Global classical solutions to the 3D isentropic compressible Navier-Stokes equations in a bounded domain [J].
Yu, Haibo ;
Zhao, Junning .
NONLINEARITY, 2017, 30 (01) :361-381
[29]   LOW MACH NUMBER LIMIT OF STRONG SOLUTIONS FOR 3-D FULL COMPRESSIBLE MHD EQUATIONS WITH DIRICHLET BOUNDARY CONDITION [J].
Zeng, Lan ;
Ni, Guoxi ;
Li, Yingying .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10) :5503-5522
[30]   3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a global existence theorem [J].
Ivan Dražić ;
Nermina Mujaković .
Boundary Value Problems, 2015