STABILITY OF OSCILLATING BOUNDARY LAYERS IN ROTATING FLUIDS

被引:0
作者
Masmoudi, Nader [1 ]
Rousset, Frederic [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2008年 / 41卷 / 06期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to epsilon. This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
引用
收藏
页码:955 / 1002
页数:48
相关论文
共 33 条
[1]  
[Anonymous], CAMBRIDGE MONOGRAPHS
[2]  
[Anonymous], MEM AM MATH SOC
[3]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[4]  
Babin A, 1996, EUR J MECH B-FLUID, V15, P291
[5]   VALIDITY OF THE QUASI-GEOSTROPHIC MODEL FOR LARGE-SCALE FLOW IN THE ATMOSPHERE AND OCEAN [J].
BOURGEOIS, AJ ;
BEALE, JT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1023-1068
[6]  
Chemin J.-Y., 2006, OXFORD LECT SERIES M, V32
[7]  
Colin T, 1997, CR ACAD SCI I-MATH, V324, P275
[8]   Linear instability implies nonlinear instability for various types of viscous boundary layers [J].
Desjardins, B ;
Grenier, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (01) :87-106
[9]   Stability of mixed Ekman-Hartmann boundary layers [J].
Desjardins, B ;
Dormy, E ;
Grenier, E .
NONLINEARITY, 1999, 12 (02) :181-199
[10]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268