共 50 条
Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease
被引:49
|作者:
Herz, Damian M.
[1
,2
]
Siebner, Hartwig R.
[2
]
Hulme, Oliver J.
[2
]
Florin, Esther
[1
,3
]
Christensen, Mark S.
[2
,4
,5
]
Timmermann, Lars
[1
]
机构:
[1] Univ Hosp Cologne, Dept Neurol, Cologne, Germany
[2] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, DK-2650 Hvidovre, Denmark
[3] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[4] Univ Copenhagen, Dept Nutr Exercise & Sports, DK-2650 Hvidovre, Denmark
[5] Univ Copenhagen, Dept Neurosci & Pharmacol, DK-2650 Hvidovre, Denmark
来源:
基金:
英国医学研究理事会;
关键词:
Dynamic causal modelling (DCM);
Electroencephalography (EEG);
Oscillatory coupling;
Effective connectivity;
Motor system;
CEREBRAL OSCILLATORY NETWORK;
CORTICAL CONNECTIONS;
INDUCED DYSKINESIAS;
BRAIN ACTIVITY;
BASAL GANGLIA;
MOTOR;
MODULATION;
SYNCHRONIZATION;
PERFORMANCE;
ATTENTION;
D O I:
10.1016/j.neuroimage.2013.11.023
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Dopamine deficiency affects functional integration of activity in distributed neural regions. It has been suggested that lack of dopamine induces disruption of neural interactions between prefrontal and premotor areas, which might underlie impairment of motor control observed in patients with Parkinson's disease (PD). In this study we recorded cortical activity with high-density electroencephalography in 11 patients with PD as a pathological model of dopamine deficiency, and 13 healthy control subjects. Participants performed repetitive extension-flexion movements of their right index finger, which were externally paced at a rate of 0.5 Hz. This required participants to align their movement velocity to the slow external pace. Patients were studied after at least 12-hour withdrawal of dopaminergic medication (OFF state) and after intake of the dopamine precursor levodopa (ON state) in order to examine oscillatory coupling between prefrontal and premotor areas during respectively low and high levels of dopamine. In 10 patients and 12 control participants multiple source beamformer analysis yielded task-related activation of a contralateral cortical network comprising prefrontal cortex (PFC), lateral premotor cortex (lPM), supplementary motor area (SMA) and primary motor cortex (M1). Dynamic causal modelling was used to characterize task-related oscillatory coupling between prefrontal and premotor cortical areas. Healthy participants showed task-induced coupling from PFC to SMA, which was modulated within the gamma-band. In the OFF state, PD patients did not express any frequency-specific coupling between prefrontal and premotor areas. Application of levodopa reinstated task-related coupling from PFC to SMA, which was expressed as high-beta-gamma coupling. Additionally, strong within-frequency gamma-coupling as well as cross-frequency 9-y coupling was observed from PFC to 1PM. Enhancement of this cross-frequency 0-y coupling after application of levodopa was positively correlated with individual improvement in motor function. The results demonstrate that dopamine deficiency impairs the ability to establish oscillatory coupling between prefrontal and premotor areas during an externally paced motor task. Application of extrinsic dopamine in PD patients reinstates physiological prefrontal-premotor coupling and additionally induces within- and cross-frequency coupling from prefrontal to premotor areas, which is not expressed in healthy participants. C) 2013 The Authors. Published by Elsevier Inn All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文