Genomics pipelines and data integration: challenges and opportunities in the research setting

被引:47
作者
Davis-Turak, Jeremy [1 ]
Courtney, Sean M. [2 ,3 ]
Hazard, E. Starr [2 ,4 ]
Glen, W. Bailey [2 ,3 ]
da Silveira, Willian A. [2 ,3 ]
Wesselman, Timothy [1 ]
Harbin, Larry P. [5 ]
Wolf, Bethany J. [5 ]
Chung, Dongjun [5 ]
Hardiman, Gary [2 ,5 ,6 ]
机构
[1] OnRamp Bioinformat Inc, San Diego, CA USA
[2] Med Univ South Carolina, MUSC Bioinformat, Ctr Genom Med, Charleston, SC 29425 USA
[3] Med Univ South Carolina, Dept Pathol & Lab Med, Charleston, SC USA
[4] Med Univ South Carolina, Lib Sci & Informat, Charleston, SC USA
[5] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC 29425 USA
[6] Med Univ South Carolina, Dept Med, Charleston, SC 29425 USA
基金
美国国家卫生研究院;
关键词
High throughput sequencing; bioinformatics pipelines; bioinformatics best practices; RNAseq; ExomeSeq; variant calling; reproducible computational research; genomic data management; analysis provenance; DIFFERENTIAL EXPRESSION ANALYSIS; RNA-SEQ; COMPREHENSIVE ANALYSIS; READ ALIGNMENT; CANCER; DISCOVERY; FRAMEWORK; GENE; TOOL; LANDSCAPE;
D O I
10.1080/14737159.2017.1282822
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Introduction: The emergence and mass utilization of high-throughput (HT) technologies, including sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids), has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and phenotype on a massive scale. These new technologies have brought rapid advances in our understanding of cell biology, evolutionary history, microbial environments, and are increasingly providing new insights and applications towards clinical care and personalized medicine.Areas covered: The very success of this industry also translates into daunting big data challenges for researchers and institutions that extend beyond the traditional academic focus of algorithms and tools. The main obstacles revolve around analysis provenance, data management of massive datasets, ease of use of software, interpretability and reproducibility of results.Expert commentary: The authors review the challenges associated with implementing bioinformatics best practices in a large-scale setting, and highlight the opportunity for establishing bioinformatics pipelines that incorporate data tracking and auditing, enabling greater consistency and reproducibility for basic research, translational or clinical settings.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 91 条
  • [1] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [2] OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders
    Amberger, Joanna S.
    Bocchini, Carol A.
    Schiettecatte, Francois
    Scott, Alan F.
    Hamosh, Ada
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D789 - D798
  • [3] Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
  • [4] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [5] Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
    Anders, Simon
    McCarthy, Davis J.
    Chen, Yunshun
    Okoniewski, Michal
    Smyth, Gordon K.
    Huber, Wolfgang
    Robinson, Mark D.
    [J]. NATURE PROTOCOLS, 2013, 8 (09) : 1765 - 1786
  • [6] [Anonymous], 072892 BIORXIV
  • [7] [Anonymous], R PACKAGE VERSION 10
  • [8] [Anonymous], BIORXIV
  • [9] [Anonymous], 2011, Curr Protoc Bioinformatics Chapter, DOI DOI 10.1002/0471250953.BI0214-34
  • [10] Assenov Y, 2014, NAT METHODS, V11, P1138, DOI [10.1038/NMETH.3115, 10.1038/nmeth.3115]