Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons

被引:47
作者
Sakkaravarthi, K. [1 ]
Kanna, T. [1 ]
Vijayajayanthi, M. [2 ]
Lakshmanan, M. [3 ]
机构
[1] Bishop Heber Coll, Post Grad & Res Dept Phys, Tiruchirappalli 620017, Tamil Nadu, India
[2] Anna Univ, Dept Phys, Madras 600025, Tamil Nadu, India
[3] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, Tamil Nadu, India
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 05期
关键词
INTERNAL GRAVITY-WAVE; PAINLEVE PROPERTY; DARK SOLITONS; EQUATIONS;
D O I
10.1103/PhysRevE.90.052912
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painleve analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one-and two-soliton solutions and studied their dynamics briefly.
引用
收藏
页数:13
相关论文
共 66 条
[1]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[2]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[3]  
BENNEY DJ, 1977, STUD APPL MATH, V56, P81
[4]  
BENNEY DJ, 1976, STUD APPL MATH, V55, P93
[5]   Soliton Interactions of the Kadomtsev-Petviashvili Equation and Generation of Large-Amplitude Water Waves [J].
Biondini, G. ;
Maruno, K. -I ;
Oikawa, M. ;
Tsuji, H. .
STUDIES IN APPLIED MATHEMATICS, 2009, 122 (04) :377-394
[6]   Line soliton interactions of the Kadomtsev-Petviashvili equation [J].
Biondini, Gino .
PHYSICAL REVIEW LETTERS, 2007, 99 (06)
[7]  
BOYD JP, 1983, J PHYS OCEANOGR, V13, P450, DOI 10.1175/1520-0485(1983)013<0450:LWWRIE>2.0.CO
[8]  
2
[9]   Hydrodynamic Supercontinuum [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Genty, G. ;
Dudley, J. M. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[10]   Dark-and bright-rogue-wave solutions for media with long-wave-short-wave resonance [J].
Chen, Shihua ;
Grelu, Philippe ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2014, 89 (01)