Image restoration based on sparse representation using feature classification learning

被引:7
作者
Chang, Minhui [1 ]
Zhang, Lei [1 ]
机构
[1] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image restoration; Sparse representation; Feature classification learning; Sparse coding;
D O I
10.1186/s13640-020-00531-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the image inpainting method based on sparse representation, the adaptability of over-complete dictionary has a great influence on the result of image restoration. If the over-complete dictionary cannot effectively reflect the differences between different local features, it may result in the loss of texture details, resulting in blurred or over-smooth phenomenon in restored images. In view of these problems, we propose an image restoration method based on sparse representation using feature classification learning. Firstly, we perform singular value decomposition on the local gradient vector. According to the relationship between the main orientation and the secondary orientation, we classify all the local patches into three categories: smooth patch, edge patch and texture patch. Secondly, we use K-Singular Value Decomposition method to learn over-complete dictionaries that adapt to different features. Finally, we use Orthogonal Matching Pursuit method to calculate the sparse coding of target patches with different local features on their corresponding over-complete dictionaries, and use the over-complete dictionary and corresponding sparse coding to restore the damaged pixels. A series of experiments on various restoration tasks show the superior performance of the proposed method.
引用
收藏
页数:18
相关论文
共 34 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[3]   Nontexture inpainting by curvature-driven diffusions [J].
Chan, TF .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2001, 12 (04) :436-449
[4]   Mathematical models for local nontexture inpaintings [J].
Chan, TF ;
Shen, JH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :1019-1043
[5]   Region filling and object removal by exemplar-based image inpainting [J].
Criminisi, A ;
Pérez, P ;
Toyama, K .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) :1200-1212
[6]   Learning-Based Texture Synthesis and Automatic Inpainting Using Support Vector Machines [J].
Dong, Xinghui ;
Dong, Junyu ;
Sun, Guimei ;
Duan, Yuanxu ;
Qi, Lin ;
Yu, Hui .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) :4777-4787
[7]  
Efros A. A., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P1033, DOI 10.1109/ICCV.1999.790383
[8]   Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) [J].
Elad, M ;
Starck, JL ;
Querre, P ;
Donoho, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (03) :340-358
[9]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[10]  
Feng XG, 2002, CONF REC ASILOMAR C, P478