Clique-width with an inactive label

被引:3
作者
Meister, Daniel [1 ]
机构
[1] Univ Trier, D-54286 Trier, Germany
关键词
Clique-width; Linear clique-width; Characterisation; Forbidden induced subgraphs; Distance-hereditary graphs; RANK-WIDTH; NLC-WIDTH; GRAPHS;
D O I
10.1016/j.disc.2014.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An inactive label in a clique-width expression cannot be used to create edges, and vertices that are labelled inactive have already received their incident edges. We study properties of clique-width expressions with inactive labels. The main results are: a characterisation of the distance-hereditary graphs by their clique-width expressions, a characterisation of the linear clique-width of disconnected graphs, and the complete set of disconnected minimal graphs of linear clique-width at least 4. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 64
页数:31
相关论文
共 25 条
[1]   Obstructions for linear rank-width at most 1 [J].
Adler, Isolde ;
Farley, Arthur M. ;
Proskurowski, Andrzej .
DISCRETE APPLIED MATHEMATICS, 2014, 168 :3-13
[2]  
Adler I, 2013, LECT NOTES COMPUT SC, V8165, P12, DOI 10.1007/978-3-642-45043-3_3
[3]   DISTANCE-HEREDITARY GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) :182-208
[4]  
Brignall R., 2013, CORR
[5]   Claw-free graphs. III. Circular interval graphs [J].
Chudnovsky, Maria ;
Seymour, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) :812-834
[6]   Polynomial-time recognition of clique-width ≤ 3 graphs [J].
Corneil, Derek G. ;
Habib, Michel ;
Lanlignel, Jean-Marc ;
Reed, Bruce ;
Rotics, Udi .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) :834-865
[7]   COMPLEMENT REDUCIBLE GRAPHS [J].
CORNEIL, DG ;
LERCHS, H ;
BURLINGHAM, LS .
DISCRETE APPLIED MATHEMATICS, 1981, 3 (03) :163-174
[8]   Linear time solvable optimization problems on graphs of bounded clique-width [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) :125-150
[9]   HANDLE-REWRITING HYPERGRAPH GRAMMARS [J].
COURCELLE, B ;
ENGELFRIET, J ;
ROZENBERG, G .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 46 (02) :218-270
[10]   Upper bounds to the clique width of graphs [J].
Courcelle, B ;
Olariu, S .
DISCRETE APPLIED MATHEMATICS, 2000, 101 (1-3) :77-114