Tangential Flow Microfiltration for Viral Separation and Concentration

被引:11
作者
Wang, Yi [1 ]
Keller, Keely [2 ]
Cheng, Xuanhong [1 ,2 ]
机构
[1] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HIV diagnostics; cross-flow filtration; microfluidic device; COMSOL; nanoporous membrane; PAPER-BASED DEVICE; CROSS-FLOW; MICROFLUIDIC DEVICES; WHOLE-BLOOD; PLASMA; PARTICLES; CHIP; AMPLIFICATION; PURIFICATION; DIAGNOSTICS;
D O I
10.3390/mi10050320
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microfluidic devices that allow biological particle separation and concentration have found wide applications in medical diagnosis. Here we present a viral separation polydimethylsiloxane (PDMS) device that combines tangential flow microfiltration and affinity capture to enrich HIV virus in a single flow-through fashion. The set-up contains a filtration device and a tandem resistance channel. The filtration device consists of two parallel flow channels separated by a polycarbonate nanoporous membrane. The resistance channel, with dimensions design-guided by COMSOL simulation, controls flow permeation through the membrane in the filtration device. A flow-dependent viral capture efficiency is observed, which likely reflects the interplay of several processes, including specific binding of target virus, physical deposition of non-specific particles, and membrane cleaning by shear flow. At the optimal flow rate, nearly 100% of viral particles in the permeate are captured on the membrane with various input viral concentrations. With its easy operation and consistent performance, this microfluidic device provides a potential solution for HIV sample preparation in resource-limited settings.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Particle deposition and layer formation at the crossflow microfiltration [J].
Altmann, J ;
Ripperger, S .
JOURNAL OF MEMBRANE SCIENCE, 1997, 124 (01) :119-128
[2]   Transient analysis of incompressible flow through a packed bed [J].
Amiri, A ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (24) :4259-4279
[3]   Microfluidic devices for cellomics: a review [J].
Andersson, H ;
van den Berg, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03) :315-325
[4]   Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery [J].
Aran, Kiana ;
Fok, Alex ;
Sasso, Lawrence A. ;
Kamdar, Neal ;
Guan, Yulong ;
Sun, Qi ;
Uendar, Akif ;
Zahn, Jeffrey D. .
LAB ON A CHIP, 2011, 11 (17) :2858-2868
[5]   Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration [J].
Arraud, N. ;
Linares, R. ;
Tan, S. ;
Gounou, C. ;
Pasquet, J. -M. ;
Mornet, S. ;
Brisson, A. R. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2014, 12 (05) :614-627
[6]   Nanofiltration of plasma-derived biopharmaceutical products [J].
Burnouf, T ;
Radosevich, M .
HAEMOPHILIA, 2003, 9 (01) :24-37
[7]   Modern plasma fractionation [J].
Burnouf, Thierry .
TRANSFUSION MEDICINE REVIEWS, 2007, 21 (02) :101-117
[8]   Conjugation of lentivirus to paramagnetic particles via nonviral proteins allows efficient concentration and infection of primary acute myeloid leukemia cells [J].
Chan, L ;
Nesbeth, D ;
MacKey, T ;
Galea-Lauri, J ;
Gäken, J ;
Martin, F ;
Collins, M ;
Mufti, G ;
Farzaneh, F ;
Darling, D .
JOURNAL OF VIROLOGY, 2005, 79 (20) :13190-13194
[9]   Modeling and experimental verification of pilot-scale hollow fiber, direct flow microfiltration with periodic backwashing [J].
Chellam, S ;
Jacangelo, JG ;
Bonacquisti, TP .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (01) :75-81
[10]   Nanoporous Elements in Microfluidics for Multiscale Manipulation of Bioparticles [J].
Chen, Grace D. ;
Fachin, Fabio ;
Fernandez-Suarez, Marta ;
Wardle, Brian L. ;
Toner, Mehmet .
SMALL, 2011, 7 (08) :1061-1067