An enhanced semantic indexing implementation for conceptual information retrieval

被引:0
|
作者
Jiang, E [1 ]
机构
[1] Univ San Diego, San Diego, CA 92110 USA
来源
INTELLIGENT INFORMATION PROCESSING AND WEB MINING | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent semantic indexing (LSI) is a rank-reduced vector space model and has demonstrated an improved retrieval performance over traditional lexical searching methods. By applying the singular value decomposition (SVD) to the original term by document space, LSI transforms individual terms into the statistically derived conceptual indices and is capable of retrieving information based on the semantic content. Recently, an updated LSI model, referred to as RSVD-LSI, has been proposed [5,6] for effective information retrieval. It updates LSI based on user feedback and can be formulated By a modified Riemannian SVD for a low-rank matrix. In this paper, an new efficient implementation of RSVD-LSI is discribed and the applications and performance analysis of RSVD-LSI on dynamic document collections are discussed. The effectiveness of RSVD-LSI as a conceptual information retrieval technique is demonstrated by experiments on some document collections.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 50 条
  • [1] Downdating the latent semantic indexing model for conceptual information retrieval
    Witter, Dian I.
    Berry, Michael W.
    Computer Journal, 41 (08): : 589 - 601
  • [2] Downdating the latent semantic indexing model for conceptual information retrieval
    Witter, DI
    Berry, MW
    COMPUTER JOURNAL, 1998, 41 (08): : 589 - 601
  • [3] Conceptual indexing for multilingual information retrieval
    Guyot, Jacques
    Radhouani, Said
    Falquet, Gilles
    ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 102 - 112
  • [4] An approach to semantic indexing and information retrieval
    Suarez Baron, Marco
    Salinas Valencia, Kathleen
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2009, (48): : 174 - 187
  • [5] Information retrieval and text categorization with semantic indexing
    Rosso, P
    Molina, A
    Pla, F
    Jiménez, D
    Vidal, V
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2004, 2945 : 596 - 600
  • [6] Semantic indexing of Arabic texts for information retrieval system
    Abderrahim, Mohammed Alaeddine
    Dib, Mohammed
    Abderrahim, Mohammed El-Amine
    Chikh, Mohammed Amine
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2016, 19 (02) : 229 - 236
  • [7] Semantic indexing and fuzzy relevance model in information retrieval
    Kang, BY
    Kim, DW
    Lee, SJ
    Computational Intelligence for Modelling and Prediction, 2005, 2 : 49 - 60
  • [8] Using latent semantic indexing for multilanguage information retrieval
    Berry, MW
    Young, PG
    COMPUTERS AND THE HUMANITIES, 1995, 29 (06): : 413 - 429
  • [9] IMPROVING INFORMATION-RETRIEVAL WITH LATENT SEMANTIC INDEXING
    DEERWESTER, S
    DUMAIS, S
    LANDAUER, T
    FURNAS, G
    BECK, L
    PROCEEDINGS OF THE ASIS ANNUAL MEETING, 1988, 25 : 36 - 40
  • [10] Personal information retrieval based on latent semantic indexing
    Yang, Z
    Deng, GS
    PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 287 - 291