Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis

被引:22
作者
Tiwari, Poonam [1 ,3 ]
Indoliya, Yuvraj [1 ,2 ]
Chauhan, Abhishek Singh [1 ,2 ]
Pande, Veena [3 ]
Chakrabarty, Debasis [1 ,2 ]
机构
[1] CSIR Natl Bot Res Inst, Mol Biol & Biotechnol Div, Lucknow 226001, Uttar Pradesh, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Kumaun Univ, Dept Biotechnol, Naini Tal 26300, India
关键词
Arabidopsis; Drought; MYB; PEG; RNA-Seq; Salicylic acid; AGROBACTERIUM-MEDIATED TRANSFORMATION; DROUGHT TOLERANCE; REPRODUCTIVE STAGE; DEFENSE RESPONSES; ABSCISIC-ACID; GENE; PROTEIN; PERFORMANCE; RESISTANCE; TOPHAT;
D O I
10.1016/j.ecoenv.2020.111361
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Among various abiotic stresses, water deficit hit the first in the list followed by heavy metal stresses as a serious environmental growth-limiting factor that restricts the global crop yield. Molecular approaches will help us to trace key regulators which are involved in stress-related phenomenon to enhance crop productivity. The present study functionally characterized one of the key regulators, OsMYB-R1 in Arabidopsis. Phylogenetic analyses indicated that OsMYB-R1 had a close relationship with Sorghum bicolour and Zea mays. Ectopic expression of OsMYB-R1 in Arabidopsis resulted in improved tolerance to PEG/drought and chromium stress in addition to conferring no tolerance to salinity stress. Further RNA seq. data revealed that OsMYB-R1 regulates the expression of key genes that improve the root architecture and maintain the cellular homeostasis of transgenic lines through an efficient anti-oxidant system. It also reveals the differential gene expression of stress-responsive and hormone-responsive genes, which indicate the intricate network of defense regulatory machinery activated in transgenic lines. Additionally, salicylic acid (SA) plays a significant role in promoting the growth of the OsMYB-R1 over-expressing plants and increased GUS intensity in SA treated OsMYB-R1 promoter plants demonstrate the explicit role of SA signaling in overcoming stress tolerance. Whereas no significant change was observed in OsMYB-R1 over-expressing plants after ABA and MeJA treatment. Overall, OsMYB-R1 is a promising gene resource for improving abiotic stress tolerance in other crops, especially in dicotyledon plants.
引用
收藏
页数:12
相关论文
共 66 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress [J].
Banerjee, Aditya ;
Roychoudhury, Aryadeep .
PROTOPLASMA, 2017, 254 (01) :3-16
[3]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[4]  
Bolser D, 2016, METHODS MOL BIOL, V1374, P115, DOI 10.1007/978-1-4939-3167-5_6
[5]   GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance [J].
Butt, Hamama Islam ;
Yang, Zhaoen ;
Gong, Qian ;
Chen, Eryong ;
Wang, Xioaqian ;
Zhao, Ge ;
Ge, Xiaoyang ;
Zhang, Xueyan ;
Li, Fuguang .
BMC PLANT BIOLOGY, 2017, 17
[6]   A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress [J].
Chen, Tianzi ;
Li, Wenjuan ;
Hu, Xuehong ;
Guo, Jiaru ;
Liu, Aimin ;
Zhang, Baolong .
PLANT AND CELL PHYSIOLOGY, 2015, 56 (05) :917-929
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Hydraulic and chemical signalling in the control of stomatal conductance and transpiration [J].
Comstock, JP .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (367) :195-200
[9]  
Desjardins Philippe, 2010, J Vis Exp, DOI 10.3791/2565
[10]   LEAF SENESCENCE - CORRELATED WITH INCREASED LEVELS OF MEMBRANE-PERMEABILITY AND LIPID-PEROXIDATION, AND DECREASED LEVELS OF SUPEROXIDE-DISMUTASE AND CATALASE [J].
DHINDSA, RS ;
PLUMBDHINDSA, P ;
THORPE, TA .
JOURNAL OF EXPERIMENTAL BOTANY, 1981, 32 (126) :93-101