A Single Layer Architecture to FPGA Implementation of BP Artificial Neural Network

被引:1
作者
Liu Shoushan [1 ]
Chen Yan [1 ]
Xu Wenshang [1 ]
Zhang Tongjun [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao, Peoples R China
来源
2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2 | 2010年
关键词
neural network; architecture; hardware implementation; FPGA;
D O I
10.1109/CAR.2010.5456553
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on discussions of the hardware implementations of artificial neural network (ANN), the single layer architecture to FPGA of the back propagation artificial neural network (BP ANN) is proposed. To construct the single layer architecture, the computing blocks of BP ANN are presented. The construction of the single layer architecture is described. According the experiments of the implementation in FPGA and the defects classification in ultrasonic non destruction detection of carbon fibre reinforced plastic (CFRP), the single layer architecture of BP ANN performs well and can serve the applications.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 22 条
[1]  
[Anonymous], VLSI DIGITAL SIGNAL
[2]  
Chen YJ, 2002, IEEE AFRICON, P337, DOI 10.1109/AFRCON.2002.1146859
[3]   GANGLION - A FAST FIELD-PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF A CONNECTIONIST CLASSIFIER [J].
COX, CE ;
BLANZ, WE .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1992, 27 (03) :288-299
[4]  
Cristea M., 2001, PROC IEEE POWER ELEC, V2, P784
[5]  
Eldredge J. G., 1994, Proceedings IEEE Workshop on FPGAs for Custom Computing Machines (Cat. No.94TH0611-4), P180, DOI 10.1109/FPGA.1994.315611
[6]  
Elredge J.G., 1994, P IEEE INT C NEUR NE
[7]  
Haiyan Z, 2006, J HARBIN ENG U, V27, P40
[8]  
Hauck Scott, 2007, RECONFIGURABLE COMPU
[9]   Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization [J].
Himavathi, S. ;
Anitha, D. ;
Muthuramalingam, A. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (03) :880-888
[10]  
Hornick K. M., 1985, NEURAL NETWORKS, V2, P141