Amalgamated free product rigidity for group von Neumann algebras

被引:18
|
作者
Chifan, Ionut [1 ]
Ioana, Adrian [2 ,3 ]
机构
[1] Univ Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] IMAR, Bucharest, Romania
基金
美国国家科学基金会;
关键词
W*-superrigidity; Group von Neumann algebra; Amalgamated free product; W-ASTERISK-SUPERRIGIDITY; II1; FACTORS; STRUCTURAL THEORY; MALLEABLE ACTIONS; BERNOULLI ACTIONS; PROPERTY-T; INDEX; RINGS;
D O I
10.1016/j.aim.2018.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a fairly large family of amalgamated free product groups Gamma = Gamma(1) (*Sigma) Gamma(2) whose amalgam structure can be completely recognized from their von Neumann algebras. Specifically, assume that Gamma(i) is a product of two icc non-amenable bi-exact groups, and Sigma is icc amenable with trivial one-sided commensurator in Gamma(i), for every i = 1,2. Then Gamma satisfies the following rigidity property: any group Lambda such that L(Lambda) is isomorphic to L(Gamma) admits an amalgamated free product decomposition Lambda = Lambda(1 *Delta) Lambda(2) such that the inclusions L(Delta) subset of L(Lambda(i)) and L(Sigma) subset of L(Gamma(i)) are isomorphic, for every i = 1,2. This result significantly strengthens some of the previous Bass-Serre rigidity results for von Neumann algebras. As a corollary, we obtain the first examples of amalgamated free product groups which are W*-superrigid. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 850
页数:32
相关论文
共 50 条
  • [41] W*-Superrigidity for cocycle twisted group von Neumann algebras
    Donvil, Milan
    Vaes, Stefaan
    INVENTIONES MATHEMATICAE, 2025, 240 (01) : 193 - 260
  • [42] On Cardinal Invariants and Generators for von Neumann Algebras
    Sherman, David
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02): : 455 - 480
  • [43] Quasinormalizers in crossed products of von Neumann algebras
    Bannon, Jon P.
    Cameron, Jan
    Chifan, Ionut
    Mukherjee, Kunal
    Smith, Roger
    Wiggins, Alan
    ADVANCES IN MATHEMATICS, 2024, 443
  • [44] Mixing subalgebras of finite von Neumann algebras
    Cameron, Jan
    Fang, Junsheng
    Mukherjee, Kunal
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 343 - 366
  • [45] Maximal von Neumann subalgebras in type I von Neumann algebras
    Zhou, Xiaoyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (02)
  • [46] Nonlinear Maps Preserving the Mixed Product [A ○ B, C]* on Von Neumann Algebras
    Li, Changjing
    Zhao, Yuanyuan
    Zhao, Fangfang
    FILOMAT, 2021, 35 (08) : 2775 - 2781
  • [47] Relative Haagerup property for arbitrary von Neumann algebras
    Caspers, Martijn
    Klisse, Mario
    Skalski, Adam
    Vos, Gerrit
    Wasilewski, Mateusz
    ADVANCES IN MATHEMATICS, 2023, 421
  • [48] ON CYCLIC VECTORS AND THEN VON NEUMANN ALGEBRAS
    Pop, Florin
    OPERATORS AND MATRICES, 2013, 7 (02): : 417 - 424
  • [49] Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras
    Li, Changjing
    Lu, Fangyan
    Fang, Xiaochun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2339 - 2345
  • [50] Tensor Product Decompositions of II1 Factors Arising from Extensions of Amalgamated Free Product Groups
    Chifan, Ionut
    de Santiago, Rolando
    Sucpikarnon, Wanchalerm
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (03) : 1163 - 1194