Packing chromatic number under local changes in a graph

被引:28
作者
Bresar, Bostjan [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rall, Douglas F. [4 ]
Washe, Kirsti [5 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Furman Univ, Dept Math, Greenville, SC 29613 USA
[5] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
Packing chromatic number; Cubic graph; Subdivision; Contraction; HEXAGONAL LATTICE; DISTANCE GRAPHS; COLORINGS; PRODUCT;
D O I
10.1016/j.disc.2016.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The packing chromatic number chi(rho)(G) of a graph G is the smallest integer k such that there exists.a k-vertex coloring of G in which any two vertices receiving color i are at distance at least i + 1. It is proved that in the class of subcubic graphs the packing chromatic number is bigger than 13, thus answering an open problem from Gastineau and Togni (2016). In addition, the packing chromatic number is investigated with respect to several local operations. In particular, if S-e(G) is the graph obtained from a graph G by subdividing its edge e, then [chi(rho)(G)/2] + 1 <= chi(rho)(S-e(G)) <= chi(rho)(G) + 1. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1110 / 1115
页数:6
相关论文
共 50 条
  • [21] The exponential growth of the packing chromatic number of iterated Mycielskians
    Bidine, Ez-Zobair
    Gadi, Taoufiq
    Kchikech, Mustapha
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 232 - 241
  • [22] INTRODUCTION TO DOMINATED EDGE CHROMATIC NUMBER OF A GRAPH
    Piri, Mohammad R.
    Alikhani, Saeid
    OPUSCULA MATHEMATICA, 2021, 41 (02) : 245 - 257
  • [23] On b-acyclic chromatic number of a graph
    Anholcer, Marcin
    Cichacz, Sylwia
    Peterin, Iztok
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
  • [24] Irregular chromatic number for hypercube graph and its variants
    Shyama, S.
    Iyer, Radha R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8907 - 8913
  • [25] Total dominator chromatic number of some operations on a graph
    Ghanbari, Nima
    Alikhani, Saeid
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2018, 6 (02): : 9 - 20
  • [26] Packing Chromatic Number of Base-3 Sierpiński Graphs
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    Graphs and Combinatorics, 2016, 32 : 1313 - 1327
  • [27] The packing chromatic number of the infinite square lattice is between 13 and 15
    Martin, Barnaby
    Raimondi, Franco
    Chen, Taolue
    Martin, Jos
    DISCRETE APPLIED MATHEMATICS, 2017, 225 : 136 - 142
  • [28] ON THE INJECTIVE CHROMATIC NUMBER OF SPLITTING GRAPH AND SHADOW GRAPH OF CERTAIN REGULAR AND BIREGULAR GRAPHS
    Bhanupriya, C. K.
    Sunitha, M. S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 79 - 88
  • [29] Upper Bounds on the Chromatic Polynomial of a Connected Graph with Fixed Clique Number
    Long, Shude
    Ren, Han
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [30] Computing the chromatic number using graph decompositions via matrix rank
    Jansen, Bart M. P.
    Nederlof, Jesper
    THEORETICAL COMPUTER SCIENCE, 2019, 795 : 520 - 539