Lithium bis(trifluoromethanesulfonyl)imide assisted dual-functional separator coating materials based on covalent organic frameworks for high-performance lithium-selenium sulfide batteries

被引:52
|
作者
Yang, Yan [1 ]
Hong, Xu-Jia [1 ]
Song, Chun-Lei [1 ]
Li, Guo-Hui [1 ]
Zheng, Yi-Xin [1 ]
Zhou, Dan-Dan [1 ]
Zhang, Min [2 ]
Cai, Yue-Peng [1 ]
Wang, Hongxia [3 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] Foshan Univ, Sch Mat Sci & Energy Engn, Foshan 528000, Peoples R China
[3] QUT, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
SULFUR; ELECTRODE; CRYSTALLINE; STRATEGY; CATHODE; SPHERES; HOST; SES2;
D O I
10.1039/c9ta04614c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low transmission rate of lithium ions and the shuttling effect caused by soluble intermediate polysulfide/polyselenide ionic species have greatly limited the performance of Li-SeS2 batteries. In this work, we demonstrate that a separator coating material based on covalent-organic frameworks (COFs), TPB-DMTP-COF, can effectively resolve these issues. It is found that the TPB-DMTP-COF material can selectively adsorb lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) species in the electrolyte through the formation of hydrogen bonding of C-HMIDLINE HORIZONTAL ELLIPSISF and OMIDLINE HORIZONTAL ELLIPSISLi. The accumulation of LiTFSI in the channels of TPB-DMTP-COF leads to a narrower pore size of the material and enhanced transportation of lithium ions in Li-SeS2 cells when the material is used as the separator coating. As a consequence, outstanding performance in terms of energy storage and stability was achieved in the Li-SeS2 battery using the TPB-DMTP-COF separator coating with a specific capacity of 844.6 mA h g(-1) at 0.5C and a SeS2 loading of 2 mg cm(-2). Even at a higher SeS2 loading of 4 mg cm(-2), the cell demonstrated a specific capacity of 684 mA h g(-1) at 1C. After 800 cycles, 416.3 mA h g(-1) was still retained with a capacity decay rate of only 0.05% per cycle. This work sheds light on a new strategy toward high performance Li-SeS2 batteries by using COF based functional separator coating materials.
引用
收藏
页码:16323 / 16329
页数:7
相关论文
共 50 条
  • [21] Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries
    Zhang, He
    Yu, Faqi
    Kang, Wenpei
    Shen, Qiang
    CARBON, 2015, 95 : 354 - 363
  • [22] Dual-functional application of a metal-organic framework in high-performance all-solid-state lithium metal batteries
    Lu, Chengyi
    Wu, Yuchen
    Rong, Yi
    Zhu, Haiye
    Chen, Xin
    Gu, Tianyi
    Lu, Zhengyi
    Rummeli, Mark H.
    Yang, Ruizhi
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [23] Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries
    Li, Jingfa
    Liu, Hongmin
    Sun, Kaiwen
    Wang, Ronghao
    Qian, Chengfei
    Yu, Feng
    Zhang, Lei
    Bao, Weizhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (13) : 7326 - 7332
  • [24] Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium-Metal Batteries
    Li, Chen
    Wang, Dan-Dong
    Poon Ho, Gerald Siu Hang
    Zhang, Zhengyang
    Huang, Jun
    Bang, Ki-Taek
    Lau, Chun Yin
    Leu, Shao-Yuan
    Wang, Yanming
    Kim, Yoonseob
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (45) : 24603 - 24614
  • [25] Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium-Metal Batteries
    Li, Chen
    Wang, Dan-Dong
    Poon Ho, Gerald Siu Hang
    Zhang, Zhengyang
    Huang, Jun
    Bang, Ki-Taek
    Lau, Chun Yin
    Leu, Shao-Yuan
    Wang, Yanming
    Kim, Yoonseob
    Journal of the American Chemical Society, 2023,
  • [26] High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks
    Zhang, Xue
    Yao, Lu
    Liu, Shuai
    Zhang, Qin
    Mai, Yiyong
    Hu, Nantao
    Wei, Hao
    MATERIALS TODAY ENERGY, 2018, 7 : 141 - 148
  • [27] Redox-Active Covalent Organic Frameworks with Nickel-Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries
    Ke, Si-Wen
    Wang, Yaoda
    Su, Jian
    Liao, Kang
    Lv, Sen
    Song, Xinmei
    Ma, Tianrui
    Yuan, Shuai
    Jin, Zhong
    Zuo, Jing-Lin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (18) : 8267 - 8277
  • [28] Sulfur cathodes based on dual-functional GMs-MnOOH for high performance lithium sulfur batteries
    Zhang, Yan
    Yang, Yujie
    Huang, Cong
    Wang, Jiande
    Liu, Xuelian
    Apostol, Petru
    Hu, Aiping
    Wang, Junying
    Chen, Xiaohua
    Wang, Junzhong
    MATERIALS TODAY COMMUNICATIONS, 2021, 29
  • [29] Cerium Based Metal-Organic Frameworks as an Efficient Separator Coating Catalyzing the Conversion of Polysulfides for High Performance Lithium-Sulfur Batteries
    Hong, Xu-Jia
    Song, Chun-Lei
    Yang, Yan
    Tan, Hao-Chong
    Li, Guo-Hui
    Cai, Yue-Peng
    Wang, Hongxia
    ACS NANO, 2019, 13 (02) : 1923 - 1931
  • [30] Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries
    Jamaluddin, Anif
    Sin, Yu-Yu
    Adhitama, Egy
    Prayogi, Achmad
    Wu, Yi-Ting
    Chang, Jeng-Kuei
    Su, Ching-Yuan
    CARBON, 2022, 197 : 141 - 151