Lithium bis(trifluoromethanesulfonyl)imide assisted dual-functional separator coating materials based on covalent organic frameworks for high-performance lithium-selenium sulfide batteries

被引:52
|
作者
Yang, Yan [1 ]
Hong, Xu-Jia [1 ]
Song, Chun-Lei [1 ]
Li, Guo-Hui [1 ]
Zheng, Yi-Xin [1 ]
Zhou, Dan-Dan [1 ]
Zhang, Min [2 ]
Cai, Yue-Peng [1 ]
Wang, Hongxia [3 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] Foshan Univ, Sch Mat Sci & Energy Engn, Foshan 528000, Peoples R China
[3] QUT, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
SULFUR; ELECTRODE; CRYSTALLINE; STRATEGY; CATHODE; SPHERES; HOST; SES2;
D O I
10.1039/c9ta04614c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low transmission rate of lithium ions and the shuttling effect caused by soluble intermediate polysulfide/polyselenide ionic species have greatly limited the performance of Li-SeS2 batteries. In this work, we demonstrate that a separator coating material based on covalent-organic frameworks (COFs), TPB-DMTP-COF, can effectively resolve these issues. It is found that the TPB-DMTP-COF material can selectively adsorb lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) species in the electrolyte through the formation of hydrogen bonding of C-HMIDLINE HORIZONTAL ELLIPSISF and OMIDLINE HORIZONTAL ELLIPSISLi. The accumulation of LiTFSI in the channels of TPB-DMTP-COF leads to a narrower pore size of the material and enhanced transportation of lithium ions in Li-SeS2 cells when the material is used as the separator coating. As a consequence, outstanding performance in terms of energy storage and stability was achieved in the Li-SeS2 battery using the TPB-DMTP-COF separator coating with a specific capacity of 844.6 mA h g(-1) at 0.5C and a SeS2 loading of 2 mg cm(-2). Even at a higher SeS2 loading of 4 mg cm(-2), the cell demonstrated a specific capacity of 684 mA h g(-1) at 1C. After 800 cycles, 416.3 mA h g(-1) was still retained with a capacity decay rate of only 0.05% per cycle. This work sheds light on a new strategy toward high performance Li-SeS2 batteries by using COF based functional separator coating materials.
引用
收藏
页码:16323 / 16329
页数:7
相关论文
共 30 条
  • [1] Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries
    Wang, Jun
    Ke, Jing-Ping
    Wu, Zhen-Yi
    Zhong, Xiao-Na
    Zheng, Song-Bai
    Li, Yong-Jun
    Zhao, Wen-Hua
    COATINGS, 2022, 12 (07)
  • [2] High energy density lithium-selenium batteries enabled by a covalent organic framework-coated separator
    Si, Liping
    Wang, Jianyi
    Li, Guohui
    Hong, Xujia
    Wei, Qin
    Yang, Yan
    Zhang, Min
    Cai, Yuepeng
    MATERIALS LETTERS, 2019, 246 : 144 - 148
  • [3] Covalent Organic Frameworks as the Coating Layer of Ceramic Separator for High-Efficiency Lithium Sulfur Batteries
    Wang, Jianyi
    Si, Liping
    Wei, Qin
    Hong, Xujia
    Cai, Songliang
    Cai, Yuepeng
    ACS APPLIED NANO MATERIALS, 2018, 1 (01): : 132 - 138
  • [4] Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    Zhu, Lingyun
    Wang, Han
    Naeem, Abdul
    Khattak, Abdul Muqsit
    Liang, Bin
    Khan, Niaz Ali
    Wei, Zhixiang
    Li, Lianshan
    Tang, Zhiyong
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)
  • [5] High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks
    Zhang, Xue
    Yao, Lu
    Liu, Shuai
    Zhang, Qin
    Mai, Yiyong
    Hu, Nantao
    Wei, Hao
    MATERIALS TODAY ENERGY, 2018, 7 : 141 - 148
  • [6] Cerium-Based MOF as a Separator Coating for High-Performance Lithium-Sulfur Batteries
    Su, Yuchen
    Wang, Wensheng
    Wang, Weikun
    Wang, Anbang
    Huang, Yaqin
    Guan, Yuepeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [7] Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries
    Wu, Xinyu
    Zhang, Shuoqing
    Xu, Xiaoyi
    Wen, Fuxiang
    Wang, Hanwen
    Chen, Hongzheng
    Fan, Xiulin
    Huang, Ning
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (11)
  • [8] Covalent organic frameworks for high-performance rechargeable lithium metal batteries: Strategy, mechanism, and application
    Zhang, Conghui
    Li, Fangkun
    Gu, Tengteng
    Song, Xin
    Yuan, Jujun
    Ouyang, Liuzhang
    Zhu, Min
    Liu, Jun
    PROGRESS IN MATERIALS SCIENCE, 2025, 152
  • [9] Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials
    Zhang, Jinkai
    Li, Jiali
    Liu, Xiaoming
    Mu, Ying
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (03):
  • [10] Exfoliated Triazine-Based Covalent Organic Nanosheets with Multielectron Redox for High-Performance Lithium Organic Batteries
    Lei, Zhendong
    Chen, Xiudong
    Sun, Weiwei
    Zhang, Yong
    Wang, Yong
    ADVANCED ENERGY MATERIALS, 2019, 9 (03)