The Quantum Metal Ferroelectric Field-Effect Transistor

被引:40
作者
Frank, David J. [1 ]
Solomon, Paul M. [1 ]
Dubourdieu, Catherine [1 ]
Frank, Martin M. [1 ]
Narayanan, Vijay [1 ]
Theis, Thomas N. [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Ferroelectrics (FEs); field-effect transistor (FET); low power devices; negative capacitance; steep slope; NEGATIVE CAPACITANCE; FILMS; SILICON;
D O I
10.1109/TED.2014.2314652
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It has recently been suggested that ferroelectric (FE) negative capacitance effects can be used to achieve steep subthreshold slope field-effect transistors, which are greatly desired for reducing energy consumption in modern digital electronics. Here, we propose that this concept can be improved by the introduction of a very thin metal or metal-like layer (a quantum metal) between the FE and the semiconductor channel. We show how to design this layer so that it attenuates the polarization charge of the FE, applying an appropriate charge to the semiconductor, while at the same time presenting a relatively constant capacitance to the FE layer, as is needed to stabilize the negative capacitance regime. For homogeneous polarization, we estimate that this device (a QMFeFET) can have extremely steep subthreshold characteristics (2 mV/decade over 11 decades) and that its energy and delay performance are advantageous.
引用
收藏
页码:2145 / 2153
页数:9
相关论文
共 21 条
[1]  
Bratkovsky A. M., 2010, J COMPUT THEORETICAL, V6, P465
[2]   Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors [J].
Cano, A. ;
Jimenez, D. .
APPLIED PHYSICS LETTERS, 2010, 97 (13)
[3]  
Chen L.-Q., 2007, TOPICS APPL PHYS, V105
[4]   Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode [J].
Dubourdieu, Catherine ;
Bruley, John ;
Arruda, Thomas M. ;
Posadas, Agham ;
Jordan-Sweet, Jean ;
Frank, Martin M. ;
Cartier, Eduard ;
Frank, David J. ;
Kalinin, Sergei V. ;
Demkov, Alexander A. ;
Narayanan, Vijay .
NATURE NANOTECHNOLOGY, 2013, 8 (10) :748-754
[5]   Optimizing CMOS technology for maximum performance [J].
Frank, D. J. ;
Haensch, W. ;
Shahidi, G. ;
Dokumaci, O. H. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) :419-431
[6]   Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors [J].
Jimenez, David ;
Miranda, Enrique ;
Godoy, Andres .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (10) :2405-2409
[7]  
Khan AI, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
[8]   Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures [J].
Khan, Asif Islam ;
Bhowmik, Debanjan ;
Yu, Pu ;
Kim, Sung Joo ;
Pan, Xiaoqing ;
Ramesh, Ramamoorthy ;
Salahuddin, Sayeef .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[9]  
Kozuka Y., 2010, APPL PHYS LETT, V97
[10]   Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films:: Electron microscopy and phase-field simulations [J].
Li, YL ;
Chen, LQ ;
Asayama, G ;
Schlom, DG ;
Zurbuchen, MA ;
Streiffer, SK .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6332-6340