Design and evolution of an enzyme with a non-canonical organocatalytic mechanism

被引:119
作者
Burke, Ashleigh J. [1 ]
Lovelock, Sarah L. [1 ]
Frese, Amina [1 ]
Crawshaw, Rebecca [1 ]
Ortmayer, Mary [1 ]
Dunstan, Mark [1 ]
Levy, Colin [1 ]
Green, Anthony P. [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester Inst Biotechnol, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 欧洲研究理事会;
关键词
COMPUTATIONAL DESIGN; PROTEINS; DERIVATIVES; CATALYSTS;
D O I
10.1038/s41586-019-1262-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions(1-4). However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis(5), here we report the generation of a hydrolytic enzyme that uses Nd-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design(6-10). Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nd-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. N-delta-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine(11), and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.
引用
收藏
页码:219 / +
页数:19
相关论文
共 34 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology [J].
Agostini, Federica ;
Voeller, Jan-Stefan ;
Koksch, Beate ;
Acevedo-Rocha, Carlos G. ;
Kubyshkin, Vladimir ;
Budisa, Nediljko .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (33) :9680-9703
[3]   Directed Evolution: Bringing New Chemistry to Life [J].
Arnold, Frances H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (16) :4143-4148
[4]   Computational Design of Enone-Binding Proteins with Catalytic Activity for the Morita-Baylis-Hillman Reaction [J].
Bjelic, Sinisa ;
Nivon, Lucas G. ;
Celebi-Oelcuem, Nihan ;
Kiss, Gert ;
Rosewall, Carolyn F. ;
Lovick, Helena M. ;
Ingalls, Erica L. ;
Gallaher, Jasmine Lynn ;
Seetharaman, Jayaraman ;
Lew, Scott ;
Montelione, Gaetano Thomas ;
Hunt, John Francis ;
Michael, Forrest Edwin ;
Houk, K. N. ;
Baker, David .
ACS CHEMICAL BIOLOGY, 2013, 8 (04) :749-757
[5]   Precision is essential for efficient catalysis in an evolved Kemp eliminase [J].
Blomberg, Rebecca ;
Kries, Hajo ;
Pinkas, Daniel M. ;
Mittl, Peer R. E. ;
Gruetter, Markus G. ;
Privett, Heidi K. ;
Mayo, Stephen L. ;
Hilvert, Donald .
NATURE, 2013, 503 (7476) :418-+
[6]   Enzyme-like proteins by computational design [J].
Bolon, DN ;
Mayo, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14274-14279
[7]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[8]   A SERINE PROTEASE TRIAD FORMS THE CATALYTIC CENTER OF A TRIACYLGLYCEROL LIPASE [J].
BRADY, L ;
BRZOZOWSKI, AM ;
DEREWENDA, ZS ;
DODSON, E ;
DODSON, G ;
TOLLEY, S ;
TURKENBURG, JP ;
CHRISTIANSEN, L ;
HUGEJENSEN, B ;
NORSKOV, L ;
THIM, L ;
MENGE, U .
NATURE, 1990, 343 (6260) :767-770
[9]   Biomimetic reactions catalyzed by cyclodextrins and their derivatives [J].
Breslow, R ;
Dong, SD .
CHEMICAL REVIEWS, 1998, 98 (05) :1997-2011
[10]   Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad [J].
Buller, Andrew R. ;
Townsend, Craig A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (08) :E653-E661