Large Deviations of the Range of the Planar Random Walk on the Scale of the Mean

被引:1
作者
Liu, Jingjia [1 ]
Vogel, Quirin [2 ]
机构
[1] Univ Munster, Fachbereich Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
Large deviations; Random walk range; Planar random walk; NUMBER;
D O I
10.1007/s10959-020-01039-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove an upper large deviation bound on the scale of the mean for a symmetric random walk in the plane satisfying certain moment conditions. This result complements the study by Phetpradap for the random walk range, which is restricted to dimension three and higher, and of van den Berg, Bolthausen and den Hollander, for the volume of the Wiener sausage.
引用
收藏
页码:2315 / 2345
页数:31
相关论文
共 31 条
[21]  
Le Jan Y., 2008, ECOLE ETE PROBABILIT
[22]  
LEGALL JF, 1991, ANN PROBAB, V19, P650
[23]  
Phetpradap P., 2011, THESIS
[24]  
Rosen, 2009, MEM AM MATH SOC, V198
[25]  
Sznitman A.S., 1998, PRINGER MONOGRAPHS M
[26]  
Talagrand M, 1995, PUBL MATH-PARIS, P73
[27]   The First Hitting Time of A Single Point for Random Walks [J].
Uchiyama, Kohei .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1960-2000
[28]   The mean number of sites visited by a pinned random walk [J].
Uchiyama, Kohei .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (02) :277-295
[29]   Moderate deviations for the volume of the Wiener sausage [J].
van den Berg, M ;
Bolthausen, E ;
den Hollander, F .
ANNALS OF MATHEMATICS, 2001, 153 (02) :355-406
[30]  
Vogel Q., 2020, ARXIV200713432