Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events

被引:28
作者
Nam, Won-Ho [1 ,2 ,3 ,4 ]
Tadesse, Tsegaye [1 ,2 ]
Wardlow, Brian D. [2 ,5 ]
Hayes, Michael J. [2 ]
Svoboda, Mark D. [1 ,2 ]
Hong, Eun-Mi [6 ]
Pachepsky, Yakov A. [6 ]
Jang, Min-Won [7 ]
机构
[1] Univ Nebraska, Natl Drought Mitigat Ctr, Lincoln, NE USA
[2] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA
[3] Hankyong Natl Univ, Dept Bioresources & Rural Syst Engn, Anseong, South Korea
[4] Hankyong Natl Univ, Inst Agr Environm Sci, Anseong, South Korea
[5] Univ Nebraska, Ctr Adv Land Management Informat Technol, Lincoln, NE USA
[6] USDA ARS, Beltsville Agr Res Ctr, Environm Microbial & Food Safety Lab, Beltsville, MD 20705 USA
[7] Gyeongsang Natl Univ, Inst Agr & Life Sci, Dept Agr Engn, Jinju, South Korea
基金
美国国家航空航天局;
关键词
REMOTE-SENSING DATA; SEVERITY INDEX; CLIMATE-CHANGE; GREAT-PLAINS; SATELLITE; EVAPOTRANSPIRATION; MANAGEMENT; STRESS; NDVI; VARIABILITY;
D O I
10.1080/01431161.2017.1407047
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
South Korea has experienced severe droughts and water scarcity problems that have influenced agriculture, food prices, and crop production in recent years. Traditionally, climate-based drought indices using point-based meteorological observations have been used to help quantify drought impacts on the vegetation in South Korea. However, these approaches have a limited spatial precision when mapping detailed vegetation stress caused by drought. For these reasons, the development of a drought index that provides detailed spatial-resolution information on drought-affected vegetation conditions is essential to improve the country's drought monitoring capabilities, which are needed to help develop more effective adaptation and mitigation strategies. The objective of this study was to develop a satellite-based hybrid drought index called the vegetation drought response index for South Korea (VegDRI-SKorea) that could improve the spatial resolution of agricultural drought monitoring on a national scale. The VegDRI-SKorea was developed for South Korea, modifying the original VegDRI methodology (developed for the USA) by tailoring it to the available local data resources. The VegDRI-SKorea utilizes a classification and regression tree (CART) modelling approach that collectively analyses remote-sensing data (e.g. normalized difference vegetation index (NDVI)), climate-based drought indices (e.g. self-calibrated Palmer drought severity index (PDSI) and standardized precipitation index (SPI)), and biophysical variables (e.g. elevation and land cover) that influence the drought-related vegetation stress. This study evaluates the performance of the recently developed VegDRI-SKorea for severe and extreme drought events that occurred in South Korea in 2001, 2008, and 2012. The results demonstrated that the hybrid drought index improved the more spatially detailed drought patterns compared to the station-based drought indices and resulted in a better understanding of drought impacts on the vegetation conditions. The VegDRI-SKorea model is expected to contribute to the monitoring of drought conditions nationally. In addition, it will provide the necessary information on the spatial variations of those conditions to evaluate local and regional drought risk assessment across South Korea and assist local decision-makers in drought risk management.
引用
收藏
页码:1548 / 1574
页数:27
相关论文
共 75 条
[1]   A vegetation index based technique for spatial sharpening of thermal imagery [J].
Agam, Nurit ;
Kustas, William P. ;
Anderson, Martha C. ;
Li, Fuqin ;
Neale, Christopher M. U. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) :545-558
[2]   Remote sensing of drought: Progress, challenges and opportunities [J].
AghaKouchak, A. ;
Farahmand, A. ;
Melton, F. S. ;
Teixeira, J. ;
Anderson, M. C. ;
Wardlow, B. D. ;
Hain, C. R. .
REVIEWS OF GEOPHYSICS, 2015, 53 (02) :452-480
[3]   An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with US Drought Monitor Classifications [J].
Anderson, Martha C. ;
Hain, Christopher ;
Otkin, Jason ;
Zhan, Xiwu ;
Mo, Kingtse ;
Svoboda, Mark ;
Wardlow, Brian ;
Pimstein, Agustin .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (04) :1035-1056
[4]   Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States [J].
Anderson, Martha C. ;
Hain, Christopher ;
Wardlow, Brian ;
Pimstein, Agustin ;
Mecikalski, John R. ;
Kustas, William P. .
JOURNAL OF CLIMATE, 2011, 24 (08) :2025-2044
[5]  
[Anonymous], 1965, METEOROLOGICAL DROUG
[6]  
[Anonymous], 1993, 8 C APPL CLIMATOLOGY
[7]  
[Anonymous], 1997, 972 DEP ATM SCI COL
[8]  
[Anonymous], BULLETIN
[9]   Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses [J].
Bokusheva, R. ;
Kogan, F. ;
Vitkovskaya, I. ;
Conradt, S. ;
Batyrbayeva, M. .
AGRICULTURAL AND FOREST METEOROLOGY, 2016, 220 :200-206
[10]   The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth [J].
Boyte, Stephen P. ;
Wylie, Bruce K. ;
Major, Donald J. ;
Brown, Jesslyn F. .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (02) :118-132