Further results on Hilbert's Tenth Problem

被引:5
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilbert’ s Tenth Problem; Diophantine equation; integral solution; undecidability; polygonal numbers; DIOPHANTINE EQUATIONS; REPRESENTATION; INTEGERS; THEOREM; NUMBER; RINGS;
D O I
10.1007/s11425-020-1813-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hilbert's Tenth Problem (HTP) asked for an algorithm to test whether an arbitrary polynomial Diophantine equation with integer coefficients has solutions over the ring DOUBLE-STRUCK CAPITAL Z of integers. This was finally solved by Matiyasevich negatively in 1970. In this paper we obtain some further results on HTP over DOUBLE-STRUCK CAPITAL Z. We show that there is no algorithm to determine for any P(z(1), horizontal ellipsis ,z(9)) is an element of DOUBLE-STRUCK CAPITAL Z[z(1), horizontal ellipsis ,z(g)] whether the equation P(z(1), horizontal ellipsis ,z(g)) = 0 has integral solutions with z(9) > 0. Consequently, there is no algorithm to test whether an arbitrary polynomial Diophantine equation P(z(1), horizontal ellipsis ,z(11)) = 0 (with integer coefficients) in 11 unknowns has integral solutions, which provides the best record on the original HTP over DOUBLE-STRUCK CAPITAL Z. We also show that there is no algorithm to test for any P(z(1), horizontal ellipsis ,z(17)) is an element of DOUBLE-STRUCK CAPITAL Z[z(1), horizontal ellipsis ,z(17)] whether P(z1(2), horizontal ellipsis , z1(2), horizontal ellipsis z2(17)) = 0 has integral solutions, and that there is a polynomial Q(z(1), horizontal ellipsis , z(20)) is an element of DOUBLE-STRUCK CAPITAL Z[z(1), horizontal ellipsis ,z(20)] such that {Q(z1(2), horizontal ellipsis , z20(2)): z(1), horizontal ellipsis , z(20) is an element of DOUBLE-STRUCK CAPITAL Z} boolean AND {0, 1, 2, horizontal ellipsis } coincides with the set of all primes.
引用
收藏
页码:281 / 306
页数:26
相关论文
共 32 条
[11]   CLASSIFICATION OF QUANTIFIER PREFIXES OVER DIOPHANTINE EQUATIONS [J].
JONES, JP .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1981, 27 (05) :403-410
[12]   UNIVERSAL DIOPHANTINE EQUATION [J].
JONES, JP .
JOURNAL OF SYMBOLIC LOGIC, 1982, 47 (03) :549-571
[13]   REGISTER MACHINE PROOF OF THE THEOREM ON EXPONENTIAL DIOPHANTINE REPRESENTATION OF ENUMERABLE SETS [J].
JONES, JP ;
MATIJASEVIC, YV .
JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (03) :818-829
[14]   Defining Z in Q [J].
Koenigsmann, Jochen .
ANNALS OF MATHEMATICS, 2016, 183 (01) :73-93
[15]  
Matijasevich Y. V, 1977, LOGIC FDN MATH COM 1, P121, DOI DOI 10.1007/978-94-010-1138-9_7
[16]  
MATIYASE.YV, 1970, DOKL AKAD NAUK SSSR+, V191, P279
[17]  
Matiyasevich Yu., 1993, Hilbert's Tenth Problem
[18]  
Matiyasevich Yuri, 1975, Acta Arithmetica, V27, P521
[19]  
Matiyasevich Yuri, 1981, Journal of Soviet Mathematics, V15, P33, DOI DOI 10.1007/BF01404106
[20]  
Nathanson, 1996, ADDITIVE NUMBER THEO, DOI 10.1007/978-1-4757-3845-2