共 28 条
Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts
被引:1997
作者:
Choi, Minkee
[1
]
Na, Kyungsu
[1
]
Kim, Jeongnam
[1
,2
]
Sakamoto, Yasuhiro
[5
,6
]
Terasaki, Osamu
[4
,6
]
Ryoo, Ryong
[1
,2
,3
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Chem, Ctr Funct Nanomat, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Inst NanoCentury, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea
[5] Stockholm Univ, Arrhenius Lab, S-10691 Stockholm, Sweden
[6] Osaka Prefecture Univ, Nanosci & Nanotechnol Res Ctr, Sakai, Osaka 5998570, Japan
来源:
基金:
瑞典研究理事会;
日本科学技术振兴机构;
关键词:
COKE FORMATION;
D O I:
10.1038/nature08288
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Zeolites-microporous crystalline aluminosilicates-are widely used in petrochemistry and fine-chemical synthesis(1-3) because strong acid sites within their uniform micropores enable size- and shape-selective catalysis. But the very presence of the micropores, with aperture diameters below 1 nm, often goes hand-in-hand with diffusion limitations(3-5) that adversely affect catalytic activity. The problem can be overcome by reducing the thickness of the zeolite crystals, which reduces diffusion path lengths and thus improves molecular diffusion(4,5). This has been realized by synthesizing zeolite nanocrystals(6), by exfoliating layered zeolites(7-9), and by introducing mesopores in the microporous material through templating strategies(10-17) or demetallation processes(18-22). But except for the exfoliation, none of these strategies has produced 'ultrathin' zeolites with thicknesses below 5 nm. Here we show that appropriately designed bifunctional surfactants can direct the formation of zeolite structures on themesoporous and microporous length scales simultaneously and thus yield MFI (ZSM-5, one of the most important catalysts in the petrochemical industry) zeolite nanosheets that are only 2 nm thick, which corresponds to the b-axis dimension of a single MFI unit cell. The large number of acid sites on the external surface of these zeolites renders them highly active for the catalytic conversion of large organic molecules, and the reduced crystal thickness facilitates diffusion and thereby dramatically suppresses catalyst deactivation through coke deposition during methanol-to-gasoline conversion. We expect that our synthesis approach could be applied to other zeolites to improve their performance in a range of important catalytic applications.
引用
收藏
页码:246 / U120
页数:5
相关论文