Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak

被引:0
作者
Besov, O. V. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
关键词
Sobolev space; domain with a peak; embedding theorem; BOUNDEDNESS;
D O I
10.1134/S0081543822050042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a domain G C R-n with an anisotropic peak, we construct integral representations of functions in terms of derivatives and establish conditions for the embedding W-p(s) (G) C L-q(G) of the Sobolev space in the Lebesgue space for 1 <= p <= q <= infinity.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 12 条
  • [1] Besov O.V., 1996, Integral Representations of Functions and Embedding Theorems
  • [2] Golovko AY, 2021, MATH NOTES+, V109, P694, DOI [10.4213/mzm12988, 10.1134/S0001434621050035]
  • [3] Kantorovich L. V., 2014, Functional Analysis
  • [4] KUFNER A., 2007, HARDY INEQUALITY ITS
  • [5] A characterization of two weight norm inequalities for one-sided operators of fractional type
    Lorente, M
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (05): : 1010 - 1033
  • [6] Mazya V. G., 2007, MATH J, V18, P583, DOI 10.1090/S1061-0022-07-00962-4
  • [7] Meskhi A., 1998, Georgian Math. J, V5, P565, DOI [DOI 10.1023/B:GEOR.0000008132.69276.CC, 10.1023/B:GEOR.0000008132.69276.cc]
  • [8] Prokhorov D.V., 2003, P STEKLOV I MATH+, V243, P278
  • [9] On the boundedness and compactness of a class of integral operators
    Prokhorov, DV
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 617 - 628
  • [10] On the boundedness of a class of fractional type integral operators
    Rautian, N. A.
    [J]. SBORNIK MATHEMATICS, 2009, 200 (11-12) : 1807 - 1832