SOME APPROXIMATION RESULTS FOR BERNSTEIN-KANTOROVICH OPERATORS BASED ON (p, q)-CALCULUS

被引:0
|
作者
Mursaleen, M. [1 ]
Ansari, Khursheed J. [2 ]
Khan, Asif [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2016年 / 78卷 / 04期
关键词
(p; q)-integers; q)-Bernstein-Kantorovich operators; q-Bernstein-Kantorovich operators; modulus of continuity; positive linear operators; Korovkin type approximation theorem; Q)-ANALOG;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new analogue of Bernstein-Kantorovich operators as (p,q)-Bernstein-Kantorovich operators are introduced. We discuss approximation properties for these operators based on Korovkin's type approximation theorem and we compute the order of convergence using usual modulus of continuity and also the rate of convergence when the function f belongs to the class Lip(M) (alpha). Moreover, the local approximation property of the sequence of positive linear operators K-n((p,q)) has been studied. We show comparisons and some illustrative graphics for the convergence of operators to a function. In comparison to q-analogoue of Bernstein-Kantorovich operators, our generalization gives more flexibility for the convergence of operators to a function.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 50 条
  • [21] Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators
    Berwal, Sahil
    Mohiuddine, S. A.
    Kajla, Arun
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8275 - 8288
  • [22] APPROXIMATION PROPERTIES OF RIEMANN-LIOUVILLE TYPE FRACTIONAL BERNSTEIN-KANTOROVICH OPERATORS OF ORDER
    Baytunc, Erdem
    Aktuglu, Huseyin
    Mahmudov, Nazim I.
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (04): : 544 - 567
  • [23] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [24] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [25] Convergence properties of newα-Bernstein-Kantorovich type operators
    Kumar, Ajay
    Senapati, Abhishek
    Som, Tanmoy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [26] PARAMETRIC GENERALIZATION OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS
    Kanat, Kadir
    Sofyalioglu, Melek
    Erdal, Selin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02): : 460 - 473
  • [27] Approximation by Kantorovich type q-Bernstein operators
    Dalmanoglu, Ozge
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 113 - +
  • [28] Approximation Theorems for q-Bernstein-Kantorovich Operators
    Mahmudov, N. I.
    Sabancigil, P.
    FILOMAT, 2013, 27 (04) : 721 - 730
  • [29] Construction of a new family of Bernstein-Kantorovich operators
    Mohiuddine, S. A.
    Acar, Tuncer
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7749 - 7759
  • [30] Some approximation results for Stancu type Lupas-Schurer operators based on (p, q)-integers
    Kanat, K.
    Sofyalioglu, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 129 - 142