SOME APPROXIMATION RESULTS FOR BERNSTEIN-KANTOROVICH OPERATORS BASED ON (p, q)-CALCULUS

被引:0
|
作者
Mursaleen, M. [1 ]
Ansari, Khursheed J. [2 ]
Khan, Asif [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2016年 / 78卷 / 04期
关键词
(p; q)-integers; q)-Bernstein-Kantorovich operators; q-Bernstein-Kantorovich operators; modulus of continuity; positive linear operators; Korovkin type approximation theorem; Q)-ANALOG;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new analogue of Bernstein-Kantorovich operators as (p,q)-Bernstein-Kantorovich operators are introduced. We discuss approximation properties for these operators based on Korovkin's type approximation theorem and we compute the order of convergence using usual modulus of continuity and also the rate of convergence when the function f belongs to the class Lip(M) (alpha). Moreover, the local approximation property of the sequence of positive linear operators K-n((p,q)) has been studied. We show comparisons and some illustrative graphics for the convergence of operators to a function. In comparison to q-analogoue of Bernstein-Kantorovich operators, our generalization gives more flexibility for the convergence of operators to a function.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 50 条
  • [1] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [2] Lupas , Bernstein-Kantorovich Operators Using Jackson and Riemann Type (p, q)-Integrals
    Iliyas, Mohammad
    Bhatt, Rameez A.
    Khan, Asif
    Mursaleen, M.
    FILOMAT, 2022, 36 (15) : 5221 - 5240
  • [3] Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
    Aslan, Resat
    Izgi, Aydin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 467 - 484
  • [4] Approximation Properties of Generalized λ-Bernstein-Kantorovich Type Operators
    Kumar, Ajay
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 505 - 520
  • [5] On Kantorovich Modification of (p, q)-Bernstein Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1459 - 1464
  • [6] α-Bernstein-Kantorovich operators
    Deo, Naokant
    Pratap, Ram
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 609 - 618
  • [7] Approximation by Bernstein-Kantorovich type operators based on Beta function
    Aharouch, Lahsen
    Ansari, Khursheed J.
    FILOMAT, 2023, 37 (30) : 10445 - 10457
  • [8] APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS
    Yu, Kan
    Cheng, Wentao
    Fan, Ligang
    Zhou, Xiaoling
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 547 - 558
  • [9] ψ-Bernstein-Kantorovich operators
    Aktuglu, Huseyin
    Kara, Mustafa
    Baytunc, Erdem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1124 - 1141
  • [10] APPROXIMATION PROPERTIES FOR MODIFIED q-BERNSTEIN-KANTOROVICH OPERATORS
    Mursaleen, M.
    Khan, Faisal
    Khan, Asif
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (09) : 1178 - 1197