RATIONAL CURVES ON ELLIPTIC SURFACES

被引:5
|
作者
Ulmer, Douglas [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
VARIETIES; SECTION; FIELDS; RANK;
D O I
10.1090/jag/680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a very general elliptic surface epsilon -> P-1 over the complex numbers with a section and with geometric genus pg >= 2 contains no rational curves other than the section and components of singular fibers. Equivalently, if E/C(t) is a very general elliptic curve of height d >= 3 and if L is a finite extension of C(t) with L congruent to C(u), then the Mordell-Weil group E(L) = 0.
引用
收藏
页码:357 / 377
页数:21
相关论文
共 50 条
  • [31] SUMS OF BIQUADRATES AND ELLIPTIC CURVES
    Aguirre, Julian
    Carlos Peral, Juan
    GLASNIK MATEMATICKI, 2013, 48 (01) : 49 - 58
  • [32] An Algorithm for the Rank of Elliptic Curves
    赵春来
    ChineseScienceBulletin, 1993, (16) : 1329 - 1331
  • [33] INTERSECTING THE TORSION OF ELLIPTIC CURVES
    Garcia-Fritz, Natalia
    Pasten, Hector
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (01) : 56 - 63
  • [34] Moments of the Rank of Elliptic Curves
    Miller, Steven J.
    Wong, Siman
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 151 - 182
  • [35] Rational Curves on Complex Manifolds
    Cascini, Paolo
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (02) : 291 - 315
  • [36] Rational curves on algebraic spaces
    McKernan, James
    HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY IN HONOUR OF PROFESSOR YUJIRO KAWAMATA'S SIXTIETH BIRTHDAY, 2017, 74 : 313 - 319
  • [37] ON THE EXTENDABILITY OF ELLIPTIC SURFACES OF RANK TWO AND HIGHER
    Lopez, Angelo Felice
    Munoz, Roberto
    Carlos Sierra, Jose
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (01) : 311 - 346
  • [38] ABELIAN n-DIVISION FIELDS OF ELLIPTIC CURVES AND BRAUER GROUPS OF PRODUCT KUMMER & ABELIAN SURFACES
    Varilly-Alvarado, Anthony
    Viray, Bianca
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [39] Analogue of the Brauer-Siegel theorem for Legendre elliptic curves
    Griffon, Richard
    JOURNAL OF NUMBER THEORY, 2018, 193 : 189 - 212
  • [40] Curves and cycles on K3 surfaces
    Huybrechts, D.
    ALGEBRAIC GEOMETRY, 2014, 1 (01): : 69 - 106