From refined estimates for spherical harmonics to a sharp multiplier theorem on the Grushin sphere

被引:8
作者
Casarino, Valentina [1 ]
Ciatti, Paolo [2 ]
Martini, Alessio [3 ]
机构
[1] Univ Padua, Stradella San Nicola 3, I-36100 Vicenza, Italy
[2] Univ Padua, Via Marzolo 9, I-35100 Padua, Italy
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Grushin sphere; Spectral multipliers; Spherical harmonics; Associated Legendre functions; Sub-Laplacian; Sub-Riemannian geometry; LINEAR-DIFFERENTIAL EQUATIONS; SPECTRAL MULTIPLIERS; INTEGRAL-OPERATORS; ELLIPTIC-OPERATORS; KOHN LAPLACIAN; SUBLAPLACIAN; DEGENERATE; BOUNDS;
D O I
10.1016/j.aim.2019.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a sharp multiplier theorem of Mihlin-Hormander type for the Grushin operator on the unit sphere in R-3, and a corresponding boundedness result for the associated Bochner-Riesz means. The proof hinges on precise pointwise bounds for spherical harmonics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:816 / 859
页数:44
相关论文
共 63 条
[1]   Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres [J].
Ahrens, Julian ;
Cowling, Michael G. ;
Martini, Alessio ;
Mueller, Detlef .
MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) :1659-1686
[2]  
[Anonymous], 1970, Math. USSR-Sb., DOI 10.1070/SM1970v012n0
[3]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[4]  
[Anonymous], SUBRIEMANNIAN GEOMET
[5]  
[Anonymous], 1993, LECT HERMITE LAGUERR
[6]  
[Anonymous], 2003, STANDARD MATH TABLES
[7]  
Askey R., 1965, Am. J. Math., V87, P695
[8]  
Bauer W., 2011, PARTIAL DIFFERENTIAL, V211, P183
[9]   Fundamental solution of a higher step Grushin type operator [J].
Bauer, Wolfram ;
Furutani, Kenro ;
Iwasaki, Chisato .
ADVANCES IN MATHEMATICS, 2015, 271 :188-234
[10]  
Bellaiche A., 1996, PROGR MATH, V144