Peroxymonosulfate-assisted photocatalysis with g-C3N4/BiOCOOH nanocomposites for the synergistic removal of organic pollutants

被引:36
|
作者
Liu, Haijin [1 ]
Zhang, Hui [1 ]
Chen, Min [1 ]
Zhang, Chaonan [1 ]
Du, Cuiwei [1 ]
Peng, Jianbiao [1 ]
Jiang, Kai [1 ]
机构
[1] Henan Normal Univ, Sch Environm Sci, Key Lab Yellow River & Huaihe River Water Environ, Henan Key Lab Environm Pollut Control,Minist Educ, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; BiOCOOH; g-C3N4; Peroxymonosulfate; Superoxide radicals; ATOM-DISPERSED SILVER; P-N HETEROJUNCTIONS; ULTRATHIN G-C3N4; FACILE SYNTHESIS; BISPHENOL-A; EFFICIENT DEGRADATION; DOPED G-C3N4; PERFORMANCE; FABRICATION; COMPOSITES;
D O I
10.1016/j.jwpe.2020.101580
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photocatalysis is an efficacious technology for pollutants degradation; however, there remains ample room for the improvement of its degradation efficiency. Herein, a system involving a g-C3N4/BiOCOOH photocatalyst coupled with peroxymonosulfate (PMS) was developed, using Malachite green (MG), Rhodamine B (RhB), ciprofloxacin hydrochloride (CIP), and levofloxacin hydrochloride (LVF) as target pollutants. The prepared g-C3N4/ BiOCOOH nanocomposites were systematically characterized. In contrast to pure g-C3N4 or BiOCOOH, the photocatalytic activities of the nanocomposites were enhanced due to the formation of g-C3N4/BiOCOOH heterojunctions, extensive specific surface areas, and more efficient charge separation. The degradation of RhB, MG, CIP, and LVF was further improved in this g-C3N4/BiOCOOH/PMS system due to the synergistic effects between the photocatalysts and PMS (the degradation of MG in the photocatalyst/PMS system was four fold that of a single photocatalyst system). An exploration of these synergetic mechanisms indicated that center dot O2- and O-1(2) were the most significant reactive oxygen species in the single photocatalysis system, whereas in the photocatalyst/PMS system, additional O-1(2) was generated due to the addition of PMS, and became the dominant species. This research suggests that the combination of photocatalysts and PMS is a feasible strategy for improving the pollutant removal activities of photocatalysts, which have strong potential for myriad applications in environmental remediation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Peroxymonosulfate-assisted photocatalytic degradation of rhodamine B by g-C3N4 nanoparticles modified with NiO cubes
    He, Long
    Li, Dan
    Zhou, Chengxin
    Wang, Ming
    Deng, Yunlong
    Gao, Jian
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2024, 32 (01) : 43 - 54
  • [2] Synergistic removal of naproxen through photocatalytic activation of peroxymonosulfate using g-C3N4
    Zebiri, Zakarya
    Debbache, Nadra
    Sehili, Tahar
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1331
  • [3] Combination of N-doped porous carbon and g-C3N4 for effective removal of organic pollutants via activated peroxymonosulfate
    Kong, Ling-Hui
    Wu, Yan
    Shen, Rong-Fang
    Zhang, Wen-Jie
    Dong, Zhen-Yue
    Ge, Wen-Ting
    Guo, Xiao-Jing
    Yan, Xi
    Chen, Yan
    Lang, Wan-Zhong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [4] Z-Scheme TiO2/g-C3N4 Activation of Peroxymonosulfate to Remove Organic Pollutants: Properties and Mechanism
    Zhang, Yujie
    Ren, Xuechang
    Yang, Linhai
    Wang, Huijuan
    Chen, Juxiang
    Li, Jinhui
    Wang, Rong
    CHEMISTRYSELECT, 2023, 8 (27):
  • [5] Peroxymonosulfate-assisted photocatalysis by a novel Ti3C2-based heterojunction catalyst (g-C3N4/Ti3C2/MnFe2O4) for enhanced degradation of naphthalene
    Hou, Qingzheng
    Wang, Mingyong
    Li, Taiguang
    Hou, Yaqi
    Xuan, Kai
    Hao, Yongmei
    CHEMICAL ENGINEERING JOURNAL, 2023, 464
  • [6] Synergistic effect of adsorption and photocatalysis of 3D g-C3N4 -agar hybrid aerogels
    Tan, Lu
    Yu, Chongfei
    Wang, Miao
    Zhang, Senyan
    Sun, Jingyu
    Dong, Shuying
    Sun, Jianhui
    APPLIED SURFACE SCIENCE, 2019, 467 : 286 - 292
  • [7] Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis
    Xu, Lijie
    Qi, Lanyue
    Han, Yu
    Lu, Wenyuan
    Han, Jiangang
    Qiao, Weichuan
    Mei, Xiang
    Pan, Yuwei
    Song, Kai
    Ling, Chen
    Gan, Lu
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [8] Recent Progress in Photocatalysis of g-C3N4
    Chu Zeng-Yong
    Yuan Bo
    Yan Ting-Nan
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (08) : 785 - 794
  • [9] Immobilization of Exfoliated g-C3N4 for Photocatalytical Removal of Organic Pollutants from Water
    Rusek, Jakub
    Pausova, Sarka
    Praus, Petr
    Krysa, Josef
    CATALYSTS, 2021, 11 (02) : 1 - 12
  • [10] g-C3N4/rectorite as a highly efficient catalyst for peroxymonosulfate activation to remove organic contaminants in water
    Zhu, Longlong
    Zhou, Pei-jiang
    Chen, Chaoqi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):