General description of quasiadiabatic dynamical phenomena near exceptional points

被引:172
作者
Milburn, Thomas J. [1 ]
Doppler, Joerg [2 ]
Holmes, Catherine A. [3 ]
Portolan, Stefano [4 ]
Rotter, Stefan [2 ]
Rabl, Peter [1 ]
机构
[1] Vienna Univ Technol, Inst Atom & Subatom Phys, A-1020 Vienna, Austria
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld, Australia
[4] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
奥地利科学基金会;
关键词
STABILITY LOSS; DEGENERACIES; PERSISTENCE; EVOLUTION; LASER;
D O I
10.1103/PhysRevA.92.052124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze this and related processes for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasistationarity interrupted by abrupt nonadiabatic transitions and we present a qualitative and quantitative description of this switching behavior by connecting the problem to the phenomenon of stability loss delay. This approach makes accurate predictions for the breakdown of the adiabatic theorem as well as the occurrence of chiral behavior observed previously in this context and provides a general framework to model and understand quasiadiabatic dynamical effects in non-Hermitian systems.
引用
收藏
页数:12
相关论文
共 54 条
[22]   Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard [J].
Gao, T. ;
Estrecho, E. ;
Bliokh, K. Y. ;
Liew, T. C. H. ;
Fraser, M. D. ;
Brodbeck, S. ;
Kamp, M. ;
Schneider, C. ;
Hoefling, S. ;
Yamamoto, Y. ;
Nori, F. ;
Kivshar, Y. S. ;
Truscott, A. G. ;
Dall, R. G. ;
Ostrovskaya, E. A. .
NATURE, 2015, 526 (7574) :554-U203
[23]   Time-asymmetric quantum-state-exchange mechanism [J].
Gilary, Ido ;
Mailybaev, Alexei A. ;
Moiseyev, Nimrod .
PHYSICAL REVIEW A, 2013, 88 (01)
[24]  
Glendinning P, 1994, Stability, instability and chaos: an introduction to the theory of nonlinear differential equations
[25]  
Gradshteyn IS., 2007, Table of integrals, series and products, V7
[26]   Breakdown of adiabatic transfer of light in waveguides in the presence of absorption [J].
Graefe, Eva-Maria ;
Mailybaev, Alexei A. ;
Moiseyev, Nimrod .
PHYSICAL REVIEW A, 2013, 88 (03)
[27]   The physics of exceptional points [J].
Heiss, W. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
[28]   Adiabaticity condition for non-Hermitian Hamiltonians [J].
Ibanez, S. ;
Muga, J. G. .
PHYSICAL REVIEW A, 2014, 89 (03)
[29]   PT-Symmetric Phonon Laser [J].
Jing, Hui ;
Oezdemir, S. K. ;
Lu, Xin-You ;
Zhang, Jing ;
Yang, Lan ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[30]   Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals [J].
Johnson, SG ;
Bienstman, P ;
Skorobogatiy, MA ;
Ibanescu, M ;
Lidorikis, E ;
Joannopoulos, JD .
PHYSICAL REVIEW E, 2002, 66 (06) :15