DISCRETE MAXIMUM PRINCIPLE FOR PRISMATIC FINITE ELEMENTS

被引:0
作者
Vejchodsky, Tomas [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague 1, Czech Republic
来源
ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING | 2009年
关键词
prismatic finite elements; diffusion-reaction problem; discrete maximum principle;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with a diffusion-reaction problem with homogeneous Dirichlet boundary conditions and presents conditions for the prismatic finite element meshes which guarantee the validity of the corresponding discrete maximum principle (DMP). These conditions are easy to verify and they imply a sufficient and a necessary bound to the maximal angle alpha((T))(max) in the triangular base T of a prism. The sufficient condition is alpha((T))(max) <= arctan root 7 and the necessary condition is alpha((T))(max) <= arctan root 8. If the maximal angle is in between these two values then the other angles in the triangle play a role.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 15 条
  • [1] The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem
    Brandts, Jan H.
    Korotov, Sergey
    Krizek, Michal
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) : 2344 - 2357
  • [2] Ciarlet P., 1970, AEQUATIONES MATH, V4, P338
  • [3] Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
  • [4] Failure of the discrete maximum principle for an elliptic finite element problem
    Draganescu, A
    Dupont, TF
    Scott, LR
    [J]. MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 1 - 23
  • [5] Gilbarg David, 1977, Elliptic Partial Differential Equations of Second order, V224
  • [6] HANNUKAINEN A, 2008, 15 AC SCI I MATH
  • [7] HANNUKAINEN A, 2008, J COMPUT AP IN PRESS, DOI DOI 10.1016/J.CAM.2008.08.02
  • [8] Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions
    Karátson, J
    Korotov, S
    [J]. NUMERISCHE MATHEMATIK, 2005, 99 (04) : 669 - 698
  • [9] Protter M.H., 1967, MAXIMUM PRINCIPLE DI
  • [10] Pucci P, 2007, PROG NONLINEAR DIFFE, V73, P1