Feynman's path integral and mutually unbiased bases

被引:24
作者
Tolar, J. [1 ]
Chadzitaskos, G. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CZ-11519 Prague, Czech Republic
关键词
QUANTUM-MECHANICS; SYSTEMS; OPERATOR; SPACE;
D O I
10.1088/1751-8113/42/24/245306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our previous work on quantum mechanics in Hilbert spaces of finite dimension N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G Svetlichny. He speculated that the secret of the Feynman path integral may lie in the property of mutual unbiasedness of temporally proximal bases. We confirm the corresponding property of the short-time propagator by using a specially devised N x N approximation of quantum mechanics in L(2)(R) applied to our finite-dimensional analogue of a free quantum particle.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2005, Feynman's Thesis: A New Approach to Quantum Theory
[2]  
BALIAN R, 1986, CR ACAD SCI I-MATH, V303, P773
[3]  
Berndt B.C., 1998, SERIES MONOGRAPHS AD, V21
[4]   THE DETERMINATION OF GAUSS SUMS [J].
BERNDT, BC ;
EVANS, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 5 (02) :107-129
[5]   FEYNMAN PATH-INTEGRAL AND ORDERING RULES ON DISCRETE FINITE SPACE [J].
CHADZITASKOS, G ;
TOLAR, J .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (04) :517-527
[6]   FINITE APPROXIMATIONS TO QUANTUM-SYSTEMS [J].
DIGERNES, T ;
VARADARAJAN, VS ;
VARADHAN, SRS .
REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (04) :621-648
[7]  
Digernes T, 1999, MATH SCAND, V84, P261
[8]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
[9]   Automorphisms of the fine grading of sl(n,C) associated with the generalized Pauli matrices [J].
Havlícek, M ;
Patera, J ;
Pelantová, E ;
Tolar, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) :1083-1094
[10]  
HUSSTAD E, 1997, THESIS NTNU TRONDHEI