Feynman's path integral and mutually unbiased bases

被引:24
作者
Tolar, J. [1 ]
Chadzitaskos, G. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CZ-11519 Prague, Czech Republic
关键词
QUANTUM-MECHANICS; SYSTEMS; OPERATOR; SPACE;
D O I
10.1088/1751-8113/42/24/245306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our previous work on quantum mechanics in Hilbert spaces of finite dimension N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G Svetlichny. He speculated that the secret of the Feynman path integral may lie in the property of mutual unbiasedness of temporally proximal bases. We confirm the corresponding property of the short-time propagator by using a specially devised N x N approximation of quantum mechanics in L(2)(R) applied to our finite-dimensional analogue of a free quantum particle.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] [Anonymous], 2005, Feynman's Thesis: A New Approach to Quantum Theory
  • [2] BALIAN R, 1986, CR ACAD SCI I-MATH, V303, P773
  • [3] Berndt B.C., 1998, SERIES MONOGRAPHS AD, V21
  • [4] THE DETERMINATION OF GAUSS SUMS
    BERNDT, BC
    EVANS, RJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 5 (02) : 107 - 129
  • [5] FEYNMAN PATH-INTEGRAL AND ORDERING RULES ON DISCRETE FINITE SPACE
    CHADZITASKOS, G
    TOLAR, J
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (04) : 517 - 527
  • [6] FINITE APPROXIMATIONS TO QUANTUM-SYSTEMS
    DIGERNES, T
    VARADARAJAN, VS
    VARADHAN, SRS
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (04) : 621 - 648
  • [7] Digernes T, 1999, MATH SCAND, V84, P261
  • [8] FEYNMAN RP, 1965, QUANTUM MECH PATH IN
  • [9] Automorphisms of the fine grading of sl(n,C) associated with the generalized Pauli matrices
    Havlícek, M
    Patera, J
    Pelantová, E
    Tolar, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) : 1083 - 1094
  • [10] HUSSTAD E, 1997, THESIS NTNU TRONDHEI