Simple merging technique for improving resolution in qualitative single image phase contrast tomography

被引:14
作者
Irvine, S. [1 ,2 ]
Mokso, R. [1 ]
Modregger, P. [1 ,2 ]
Wang, Z. [1 ]
Marone, F. [1 ]
Stampanoni, M. [1 ,3 ]
机构
[1] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[2] Ecole Polytech Fed Lausanne, Ctr Imagerie BioMed, CH-1015 Lausanne, Switzerland
[3] ETH, Inst Biomed Engn, CH-8092 Zurich, Switzerland
来源
OPTICS EXPRESS | 2014年 / 22卷 / 22期
关键词
RETRIEVAL; MICROTOMOGRAPHY; OBJECTS;
D O I
10.1364/OE.22.027257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For dynamic samples and/or for simple ease-of-use experiments, single-image phase contrast tomography is a very effective method for the 3D visualization of materials which would otherwise be indiscernible in attenuation based x-ray imaging. With binary samples (e.g. air-material) and monochromatic wavefields a transport-of-intensity (TIE)-based phase retrieval algorithm is known to retrieve accurate quantitative maps of the phase distribution. For mixed material samples and/or white beam radiation the algorithm can still produce useful qualitative tomographic reconstructions with significantly improved area contrast. The stability of the algorithm comes with a recognized associated loss of spatial resolution due to its essential behaviour as a low-pass filter. One possible answer to this is an image fusion technique that merges the slices reconstructed from raw phase contrast images and those after phase retrieval, where the improved contrast may be acquired without the associated loss of high-frequency information. We present this technique as a simple few-parameter Fourier method, which is easily tunable and highly compatible with current reconstruction steps. (C) 2014 Optical Society of America
引用
收藏
页码:27257 / 27269
页数:13
相关论文
共 32 条
[1]  
[Anonymous], 1999, BOOK
[2]   Interface-specific x-ray phase retrieval tomography of complex biological organs [J].
Beltran, M. A. ;
Paganin, D. M. ;
Siu, K. K. W. ;
Fouras, A. ;
Hooper, S. B. ;
Reser, D. H. ;
Kitchen, M. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (23) :7353-7369
[3]   2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance [J].
Beltran, M. A. ;
Paganin, D. M. ;
Uesugi, K. ;
Kitchen, M. J. .
OPTICS EXPRESS, 2010, 18 (07) :6423-6436
[4]   Phase objects in synchrotron radiation hard x-ray imaging [J].
Cloetens, P ;
Barrett, R ;
Baruchel, J ;
Guigay, JP ;
Schlenker, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (01) :133-146
[5]   Observation of microstructure and damage in materials by phase sensitive radiography and tomography [J].
Cloetens, P ;
PateyronSalome, M ;
Buffiere, JY ;
Peix, G ;
Baruchel, J ;
Peyrin, F ;
Schlenker, M .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (09) :5878-5886
[6]   Differential x-ray phase contrast imaging using a shearing interferometer [J].
David, C ;
Nöhammer, B ;
Solak, HH ;
Ziegler, E .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3287-3289
[7]   PHASE-CONTRAST IMAGING OF WEAKLY ABSORBING MATERIALS USING HARD X-RAYS [J].
DAVIS, TJ ;
GAO, D ;
GUREYEV, TE ;
STEVENSON, AW ;
WILKINS, SW .
NATURE, 1995, 373 (6515) :595-598
[8]   Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source [J].
Dowd, BA ;
Campbell, GH ;
Marr, RB ;
Nagarkar, V ;
Tipnis, S ;
Axe, L ;
Siddons, DP .
DEVELOPMENTS IN X-RAY TOMOGRAPHY II, 1999, 3772 :224-236
[9]  
Gonzalez R., 2008, Digital Image Processing, P954
[10]   Image deblurring by means of defocus [J].
Gureyev, TE ;
Stevenson, AW ;
Nesterets, YI ;
Wilkins, SW .
OPTICS COMMUNICATIONS, 2004, 240 (1-3) :81-88