Decidual mesenchymal stem/stromal cell-derived extracellular vesicles ameliorate endothelial cell proliferation, inflammation, and oxidative stress in a cell culture model of preeclampsia

被引:25
|
作者
Zheng, Shixuan [1 ,2 ]
Shi, Aiwu [1 ,2 ,3 ]
Hill, Sophia [1 ,2 ,4 ]
Grant, Claire [1 ,2 ]
Kokkinos, Maria I. [1 ,2 ]
Murthi, Padma [1 ,2 ,5 ,6 ]
Georgiou, Harry M. [1 ,2 ]
Brennecke, Shaun P. [1 ,2 ]
Kalionis, Bill [1 ,2 ]
机构
[1] Royal Womens Hosp, Dept Maternal Fetal Med, Pregnancy Res Ctr, Parkville, Vic, Australia
[2] Univ Melbourne, Dept Obstet & Gynaecol, Royal Womens Hosp, Parkville, Vic, Australia
[3] Nanjing Med Univ, Nanjing Matern & Child Hlth Care Hosp, Dept Matern Intens Care Unit, Nanjing, Peoples R China
[4] NSW Hlth, Hunter New England Local Hlth Dist, Sydney, NSW, Australia
[5] Hudson Inst Med Res, Ritchie Ctr, Clayton, Vic, Australia
[6] Monash Univ, Sch Clin Sci, Dept Med, Clayton, Vic, Australia
关键词
Placenta; Preeclampsia; Lipopolysaccharide; Mesenchymal; Stem; Stromal; Extracellular vesicles; PLACENTAL CHORIONIC VILLI; STEM-CELLS; SERUM; EXOSOMES; WOMEN; ANGIOGENESIS; ADHESION; RESIDE; LIPOPOLYSACCHARIDE; PATHOPHYSIOLOGY;
D O I
10.1016/j.preghy.2020.07.003
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Oxidative stress and endothelial dysfunction contribute substantially to the pathogenesis of preeclampsia (PE). Decidual mesenchymal stem/stromal cells (DMSC), reportedly reduce endothelial cell dysfunction and alleviate PE-like symptoms in a murine model. However, as a therapeutic strategy, the use of whole DMSC presents significant technical limitations, which may be overcome by employing DMSC-secreted extracellular vesicles (DMSC_EV). DMSC_EV restoration of endothelial dysfunction through a paracrine effect may alleviate the clinical features of PE. Objective: To determine whether DMSC-secreted, extracellular vesicles (DMSC_EV) restore endothelial cell function and reduce oxidative stress. Methods: DMSC were isolated from the placentae of uncomplicated term pregnancies and DMSC_EV prepared by ultracentrifugation. Human umbilical vein endothelial cells (HUVEC) were treated with bacterial lipopolysaccharide (LPS), or with serum from PE patients, to model the effects of PE. DMSC_EV were then added to treated HUVEC and their growth profiles, inflammatory state, and oxidative stress levels measured. Results: DMSC_EV displayed characteristic features of extracellular vesicles. In both LPS- and PE serum-treatment models, addition of DMSC_EV significantly increased HUVEC cell attachment and proliferation, and significantly reduced production of pro-inflammatory cytokine IL-6. The addition of DMSC_EV to LPS-treated HUVEC had no significant effect on total antioxidant capacity, superoxide dismutase levels or on lipid peroxidation levels. In contrast, the addition of DMSC_EV to PE serum-treated HUVEC resulted in a significant reduction in levels of lipid peroxidation. Conclusion: Addition of DMSC_EV had beneficial effects in both LPS- and PE serum-treated HUVEC but the two treatment models to induce endothelial cell dysfunction showed differences. The LPS treatment of HUVEC model may not accurately model the endothelial cell dysfunction characteristic of PE. Human cell culture models of PE show that DMSC_EV improve endothelial cell dysfunction in PE, but testing in in vivo models of PE is required.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment
    Adamo, A.
    Dal Collo, G.
    Bazzoni, R.
    Krampera, M.
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2019, 1871 (01): : 192 - 198
  • [32] Effects of mesenchymal stromal cell-derived extracellular vesicles on tumor growth
    Bruno, Stefania
    Collino, Federica
    Iavello, Alessandra
    Camussi, Giovanni
    FRONTIERS IN IMMUNOLOGY, 2014, 5
  • [33] Therapeutic Potential of Mesenchymal Stromal Cell-derived Small Extracellular Vesicles
    Kutzner, Tanja J.
    Bauer, Fabiola Nardi
    Giebel, Bernd
    TRANSFUSIONSMEDIZIN, 2024, 14 (04) : 190 - 199
  • [34] Efficient Route to Label Mesenchymal Stromal Cell-Derived Extracellular Vesicles
    Alberti, Diego
    Grange, Cristina
    Porta, Stefano
    Aime, Silvio
    Tei, Lorenzo
    Crich, Simonetta Geninatti
    ACS OMEGA, 2018, 3 (07): : 8097 - 8103
  • [35] Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet?
    Eirin, Alfonso
    Lerman, Lilach O.
    HYPERTENSION, 2021, 78 (02) : 261 - 269
  • [36] Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro
    Vonk, Lucienne A.
    van Dooremalen, Sanne F. J.
    Liv, Nalan
    Klumperman, Judith
    Coffer, Paul J.
    Saris, Daniel B. F.
    Lorenowicz, Magdalena J.
    THERANOSTICS, 2018, 8 (04): : 906 - 920
  • [37] Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents
    Boerger, Verena
    Bremer, Michel
    Ferrer-Tur, Rita
    Gockeln, Lena
    Stambouli, Oumaima
    Becic, Amina
    Giebel, Bernd
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (07)
  • [38] Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Rat Nucleus Pulposus Cells from Oxidative Stress
    Ekram, Sobia
    Khalid, Shumaila
    Ramzan, Faiza
    Salim, Asmat
    Bashir, Imtiaz
    Durrieu, Marie Christine
    Khan, Irfan
    CARTILAGE, 2024, 15 (03) : 328 - 344
  • [39] Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Novel Cell-Free Therapy
    Jafarinia, Morteza
    Alsahebfosoul, Fereshteh
    Salehi, Hossein
    Eskandari, Nahid
    Ganjalikhani-Hakemi, Mazdak
    IMMUNOLOGICAL INVESTIGATIONS, 2020, 49 (07) : 758 - 780
  • [40] Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions
    Almeria, Ciarra
    Kress, Sebastian
    Weber, Viktoria
    Egger, Dominik
    Kasper, Cornelia
    CELL AND BIOSCIENCE, 2022, 12 (01):