Decidual mesenchymal stem/stromal cell-derived extracellular vesicles ameliorate endothelial cell proliferation, inflammation, and oxidative stress in a cell culture model of preeclampsia

被引:25
|
作者
Zheng, Shixuan [1 ,2 ]
Shi, Aiwu [1 ,2 ,3 ]
Hill, Sophia [1 ,2 ,4 ]
Grant, Claire [1 ,2 ]
Kokkinos, Maria I. [1 ,2 ]
Murthi, Padma [1 ,2 ,5 ,6 ]
Georgiou, Harry M. [1 ,2 ]
Brennecke, Shaun P. [1 ,2 ]
Kalionis, Bill [1 ,2 ]
机构
[1] Royal Womens Hosp, Dept Maternal Fetal Med, Pregnancy Res Ctr, Parkville, Vic, Australia
[2] Univ Melbourne, Dept Obstet & Gynaecol, Royal Womens Hosp, Parkville, Vic, Australia
[3] Nanjing Med Univ, Nanjing Matern & Child Hlth Care Hosp, Dept Matern Intens Care Unit, Nanjing, Peoples R China
[4] NSW Hlth, Hunter New England Local Hlth Dist, Sydney, NSW, Australia
[5] Hudson Inst Med Res, Ritchie Ctr, Clayton, Vic, Australia
[6] Monash Univ, Sch Clin Sci, Dept Med, Clayton, Vic, Australia
关键词
Placenta; Preeclampsia; Lipopolysaccharide; Mesenchymal; Stem; Stromal; Extracellular vesicles; PLACENTAL CHORIONIC VILLI; STEM-CELLS; SERUM; EXOSOMES; WOMEN; ANGIOGENESIS; ADHESION; RESIDE; LIPOPOLYSACCHARIDE; PATHOPHYSIOLOGY;
D O I
10.1016/j.preghy.2020.07.003
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Oxidative stress and endothelial dysfunction contribute substantially to the pathogenesis of preeclampsia (PE). Decidual mesenchymal stem/stromal cells (DMSC), reportedly reduce endothelial cell dysfunction and alleviate PE-like symptoms in a murine model. However, as a therapeutic strategy, the use of whole DMSC presents significant technical limitations, which may be overcome by employing DMSC-secreted extracellular vesicles (DMSC_EV). DMSC_EV restoration of endothelial dysfunction through a paracrine effect may alleviate the clinical features of PE. Objective: To determine whether DMSC-secreted, extracellular vesicles (DMSC_EV) restore endothelial cell function and reduce oxidative stress. Methods: DMSC were isolated from the placentae of uncomplicated term pregnancies and DMSC_EV prepared by ultracentrifugation. Human umbilical vein endothelial cells (HUVEC) were treated with bacterial lipopolysaccharide (LPS), or with serum from PE patients, to model the effects of PE. DMSC_EV were then added to treated HUVEC and their growth profiles, inflammatory state, and oxidative stress levels measured. Results: DMSC_EV displayed characteristic features of extracellular vesicles. In both LPS- and PE serum-treatment models, addition of DMSC_EV significantly increased HUVEC cell attachment and proliferation, and significantly reduced production of pro-inflammatory cytokine IL-6. The addition of DMSC_EV to LPS-treated HUVEC had no significant effect on total antioxidant capacity, superoxide dismutase levels or on lipid peroxidation levels. In contrast, the addition of DMSC_EV to PE serum-treated HUVEC resulted in a significant reduction in levels of lipid peroxidation. Conclusion: Addition of DMSC_EV had beneficial effects in both LPS- and PE serum-treated HUVEC but the two treatment models to induce endothelial cell dysfunction showed differences. The LPS treatment of HUVEC model may not accurately model the endothelial cell dysfunction characteristic of PE. Human cell culture models of PE show that DMSC_EV improve endothelial cell dysfunction in PE, but testing in in vivo models of PE is required.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [21] Functional proteins of mesenchymal stem cell-derived extracellular vesicles
    Qiu, Guanguan
    Zheng, Guoping
    Ge, Menghua
    Wang, Jiangmei
    Huang, Ruoqiong
    Shu, Qiang
    Xu, Jianguo
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [22] Regenerative Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Thalakiriyawa, Dineshi Sewvandi
    Jayasooriya, Primali Rukmal
    Dissanayaka, Waruna Lakmal
    CURRENT MOLECULAR MEDICINE, 2022, 22 (02) : 98 - 119
  • [23] Mesenchymal Stem Cell-derived Extracellular Vesicles for Renal Repair
    Nargesi, Arash Aghajani
    Lerman, Lilach O.
    Eirin, Alfonso
    CURRENT GENE THERAPY, 2017, 17 (01) : 29 - 42
  • [24] Functional proteins of mesenchymal stem cell-derived extracellular vesicles
    Guanguan Qiu
    Guoping Zheng
    Menghua Ge
    Jiangmei Wang
    Ruoqiong Huang
    Qiang Shu
    Jianguo Xu
    Stem Cell Research & Therapy, 10
  • [25] MESENCHYMAL STEM CELL-DERIVED EXTRACELLULAR VESICLES AND THEIR FUNCTIONAL HETEROGENEITY
    Giebel, Bernd
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 548 - 548
  • [26] Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Zheng, Bingyi
    Wang, Xueting
    Guo, Meizhai
    Tzeng, Chi-Meng
    CELL TRANSPLANTATION, 2024, 33
  • [27] The Effects of Cell Type and Culture Condition on the Procoagulant Activity of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles
    Chance, Tiffani
    Rathbone, Christopher
    Kamucheka, Robin
    Peltier, Grantham C.
    Cap, Andrew P.
    Bynum, James A.
    TRANSFUSION, 2019, 59 : 94A - 94A
  • [28] The effects of cell type and culture condition on the procoagulant activity of human mesenchymal stromal cell-derived extracellular vesicles
    Chance, Tiffani C.
    Rathbone, Christopher R.
    Kamucheka, Robin M.
    Peltier, Grantham C.
    Cap, Andrew P.
    Bynum, James A.
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2019, 87 : S74 - S82
  • [29] Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy
    Murali, Vishnu Priya
    Holmes, Christina A.
    BONE REPORTS, 2021, 14
  • [30] Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles
    van Balkom, Bas W. M.
    Gremmels, Hendrik
    Giebel, Bernd
    Lim, Sai Kiang
    PROTEOMICS, 2019, 19 (1-2)