Stable multicharged localized optical vortices in cubic-quintic nonlinear media

被引:37
作者
Davydova, TA
Yakimenko, AI
机构
[1] Inst Nucl Res, UA-03680 Kiev, Ukraine
[2] Natl Kiev Univ, Dept Phys, UA-03022 Kiev, Ukraine
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2004年 / 6卷 / 05期
关键词
optical solitons; self-trapped beams; spinning solitons; optical vortex; angular momentum of light; generalized nonlinear Schrodinger equation;
D O I
10.1088/1464-4258/6/5/010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate analytically and numerically the stability of multiply-charged two-dimensional bright vortex solitons in media with focusing cubic and defocusing quintic nonlinearities. A vortex soliton becomes robust with respect to symmetry-breaking azimuthal perturbations in the self-defocusing regime above some critical beam power when its radial profile flattens. A stable high-power vortex has nearly homogeneous energy distribution across the beam with a rather sharp boundary. The dynamics of a slightly perturbed stable vortex soliton is found to be similar to oscillations of a liquid stream having a surface tension. We propose an explanation of stabilization of vortex solitons in media with competing nonlinearities based on the idea of sustaining effective surface tension.
引用
收藏
页码:S197 / S201
页数:5
相关论文
共 23 条
[1]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[2]   SOLITON-LIKE BUBBLES IN A SYSTEM OF INTERACTING BOSONS [J].
BARASHENKOV, IV ;
MAKHANKOV, VG .
PHYSICS LETTERS A, 1988, 128 (1-2) :52-56
[3]   STABILITY AND EVOLUTION OF THE QUIESCENT AND TRAVELING SOLITONIC BUBBLES [J].
BARASHENKOV, IV ;
PANOVA, EY .
PHYSICA D, 1993, 69 (1-2) :114-134
[4]  
Berezhiani VI, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.057601
[5]   Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses [J].
Boudebs, G ;
Cherukulappurath, S ;
Leblond, H ;
Troles, J ;
Smektala, F ;
Sanchez, F .
OPTICS COMMUNICATIONS, 2003, 219 (1-6) :427-433
[6]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[7]   Two-dimensional solitons and vortices in normal and anomalous dispersive media [J].
Davydova, TA ;
Yakimenko, AI ;
Zaliznyak, YA .
PHYSICAL REVIEW E, 2003, 67 (02) :16
[8]   Analysis of stable self-trapping of laser beams in cubic-quintic nonlinear media [J].
Dimitrevski, K ;
Reimhult, E ;
Svensson, E ;
Ohgren, A ;
Anderson, D ;
Berntson, A ;
Lisak, M ;
Quiroga-Teixeiro, ML .
PHYSICS LETTERS A, 1998, 248 (5-6) :369-376
[9]  
KARTAVENKO VG, 1984, YAD FIZ, V40, P377
[10]  
Kivshar Y.S., 2003, Optical Solitons