Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy

被引:108
作者
Li, Hongge [1 ]
Huang, Yongjiang [1 ]
Jiang, Songshan [1 ]
Lu, Yunzhuo [2 ]
Gao, Xiaoyu [1 ]
Lu, Xing [2 ]
Ning, Zhiliang [1 ]
Sun, Jianfei [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin, Peoples R China
[2] Dalian Jiaotong Univ, Sch Mat Sci & Engn, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser melting deposition; High entropy alloy; Columnar to equiaxed transition; Numerical simulation; Constitutional undercooling; MICROSTRUCTURE EVOLUTION; PROCESS PARAMETERS; ENHANCED STRENGTH; GRAIN MORPHOLOGY; RESIDUAL-STRESS; HEAT-TREATMENT; LASER; TI-6AL-4V; DEPOSITION; SUPERALLOYS;
D O I
10.1016/j.matdes.2020.109262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, a single-track CoCrFeMnNi high entropy alloy(HEA) was prepared by laser melting deposition. The microstructural evolution of columnar to equiaxed transition was experimentally observed across the molten pool. The temperature gradient and solidification rate were theoretically calculated by a finite element model via numerical simulation. Combining experimental observations and numerical simulations, a solidification map was established to quantitatively reveal the underlying correlation between solidification parameters and micro structural morphology. A decrease in the ratio of gradient temperature to solidification rate corresponding to an increasing constitutional undercooling induced columnar to equation transition during the laser melting deposition process. It was expected that the fundamental understanding of microstructural prediction of single-track as-deposited HEA parts via the solidification map would have implications on the production of bulk components with the desired microstructure and high performance. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 56 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]   Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J].
Bermingham, M. J. ;
StJohn, D. H. ;
Krynen, J. ;
Tedman-Jones, S. ;
Dargusch, M. S. .
ACTA MATERIALIA, 2019, 168 :261-274
[3]   Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions [J].
Bermingham, M. J. ;
Kent, D. ;
Zhan, H. ;
St John, D. H. ;
Dargusch, M. S. .
ACTA MATERIALIA, 2015, 91 :289-303
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy [J].
Chew, Y. ;
Bi, G. J. ;
Zhu, Z. G. ;
Ng, F. L. ;
Weng, F. ;
Liu, S. B. ;
Nai, S. M. L. ;
Lee, B. Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 :137-144
[6]   Laser 3D printing of CoCrFeMnNi high-entropy alloy [J].
Gao, Xiaoyu ;
Lu, Yunzhuo .
MATERIALS LETTERS, 2019, 236 :77-80
[7]  
Gäumann M, 2001, ACTA MATER, V49, P1051, DOI 10.1016/S1359-6454(00)00367-0
[8]   Epitaxial laser metal forming:: analysis of microstructure formation [J].
Gäumann, M ;
Henry, S ;
Cléton, F ;
Wagnière, JD ;
Kurz, W .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 271 (1-2) :232-241
[9]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[10]  
Gockel J, 2014, Addit Manuf, V1, P119, DOI DOI 10.1016/J.ADDMA.2014.09.004