SINGLE-INDEX MODULATED MULTIPLE TESTING

被引:16
作者
Du, Lilun [1 ]
Zhang, Chunming [2 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Bivariate normality; local false discovery rate; multiple comparison; p-value; simultaneous inference; symmetry property; FALSE DISCOVERY RATE; DNA COPY NUMBER; INTEGRATIVE ANALYSIS; PROSTATE-CANCER; MICROARRAY DATA; P-VALUES; RATES; POWER; EXPRESSION; GENES;
D O I
10.1214/14-AOS1222
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of large-scale multiple testing, hypotheses are often accompanied with certain prior information. In this paper, we present a single-index modulated (SIM) multiple testing procedure, which maintains control of the false discovery rate while incorporating prior information, by assuming the availability of a bivariate p-value, (p(1), p(2)), for each hypothesis, where pi is a preliminary p-value from prior information and p(2) is the primary p-value for the ultimate analysis. To find the optimal rejection region for the bivariate p-value, we propose a criteria based on the ratio of probability density functions of (p(1), p(2)) under the true null and nonnull. This criteria in the bivariate normal setting further motivates us to project the bivariate p-value to a single-index, p(theta), for a wide range of directions theta. The true null distribution of p(theta) is estimated via parametric and nonparametric approaches, leading to two procedures for estimating and controlling the false discovery rate. To derive the optimal projection direction theta, we propose a new approach based on power comparison, which is further shown to be consistent under some mild conditions. Simulation evaluations indicate that the SIM multiple testing procedure improves the detection power significantly while controlling the false discovery rate. Analysis of a real dataset will be illustrated.
引用
收藏
页码:1262 / 1311
页数:50
相关论文
共 36 条
[1]   GOing Bayesian: model-based gene set analysis of genome-scale data [J].
Bauer, Sebastian ;
Gagneur, Julien ;
Robinson, Peter N. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (11) :3523-3532
[2]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[3]   Multiple hypotheses testing with weights [J].
Benjamini, Y ;
Hochberg, Y .
SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (03) :407-418
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Adaptive linear step-up procedures that control the false discovery rate [J].
Benjamini, Yoav ;
Krieger, Abba M. ;
Yekutieli, Daniel .
BIOMETRIKA, 2006, 93 (03) :491-507
[6]   Independent filtering increases detection power for high-throughput experiments [J].
Bourgon, Richard ;
Gentleman, Robert ;
Huber, Wolfgang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9546-9551
[7]  
Carroll R. J., 2006, MEASUREMENT ERROR NO
[8]   False discovery rate control with multivariate p-values [J].
Chi, Zhiyi .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :368-411
[9]  
DURRETT R., 2010, Probability: Theory and Examples, V4th, DOI 10.1017/CBO9780511779398
[10]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160