Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer

被引:153
作者
Sun, Tingting [1 ]
Han, Jinfeng [1 ]
Liu, Shi [1 ]
Wang, Xin [2 ]
Wang, Zhi Yuan [1 ]
Xie, Zhigang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, 5625 Renmin St, Changchun 130022, Jilin, Peoples R China
[2] Jilin Univ, Hosp 1, Dept Thyroid Surg, 71 Xinmin St, Changchun 130021, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
second near-infrared; semiconducting polymer; organic nanoparticle; orthotopic liver cancer; photothermal therapy; METAL-ORGANIC FRAMEWORK; HEPATOCELLULAR-CARCINOMA; NANOPARTICLES; FLUOROPHORES; WINDOW; ABSORPTION; EFFICACY; DESIGN; 1ST;
D O I
10.1021/acsnano.9b03910
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Liver tumor is one of the most lethal cancers due to its low ratio of surgical resection, high recurrence rate, and invasiveness. Photothermal therapy (PTT) possesses many advantages for cancer therapy because of its noninvasive nature. However, most PTT is conducted in the first near-infrared (NIR-I) window, so second near infrared (NIR-II) photosensitizers with higher penetrating ability and clinical prospects are seriously desirable. Herein, a semiconducting polymer with optimized absorption in NIR-I and NIR-II regions is obtained by ternary copolymerization methodology. The prepared nanoparticle (NP) from the semiconducting polymer is used for treatment of orthotopic liver cancer upon laser irradiation. Compared with an 808 nm laser, a 1064 nm laser leads to more effective inhibition toward orthotopic liver cancer in the same conditions. These results thus demonstrate that the NIR-II polymeric NPs may inspire another aspect for highly efficient therapy of various orthotopic cancers.
引用
收藏
页码:7345 / 7354
页数:10
相关论文
共 66 条
[1]   Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy [J].
Alifu, Nuernisha ;
Zebibula, Abudureheman ;
Qi, Ji ;
Zhang, Hequn ;
Sun, Chaowei ;
Yu, Xiaoming ;
Xue, Dingwei ;
Lam, Jacky W. Y. ;
Li, Gonghui ;
Qian, Jun ;
Tang, Ben Zhong .
ACS NANO, 2018, 12 (11) :11282-11293
[2]  
Antaris AL, 2016, NAT MATER, V15, P235, DOI [10.1038/NMAT4476, 10.1038/nmat4476]
[3]   Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm [J].
Bashkatov, AN ;
Genina, EA ;
Kochubey, VI ;
Tuchin, VV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (15) :2543-2555
[4]   NIR-II fluorescence imaging using indocyanine green nanoparticles [J].
Bhavane, Rohan ;
Starosolski, Zbigniew ;
Stupin, Igor ;
Ghaghada, Ketan B. ;
Annapragada, Ananth .
SCIENTIFIC REPORTS, 2018, 8
[5]   Prognostic prediction and treatment strategy in hepatocellular carcinoma [J].
Bruix, J ;
Llovet, JM .
HEPATOLOGY, 2002, 35 (03) :519-524
[6]   Optical nano-agents in the second near-infrared window for biomedical applications [J].
Cai, Yu ;
Wei, Zheng ;
Song, Chuanhui ;
Tang, Chuanchao ;
Han, Wei ;
Dong, Xiaochen .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (01) :22-37
[7]   Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging [J].
Cao, Ziyang ;
Feng, Liangzhu ;
Zhang, Guobing ;
Wang, Junxia ;
Shen, Song ;
Li, Dongdong ;
Yang, Xianzhu .
BIOMATERIALS, 2018, 155 :103-111
[8]   Hypoxia inducible factors in hepatocellular carcinoma [J].
Chen, Chu ;
Lou, Tao .
ONCOTARGET, 2017, 8 (28) :46691-46703
[9]   A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy [J].
Cheng, Wei ;
Nie, Junpeng ;
Gao, Nansha ;
Liu, Gan ;
Tao, Wei ;
Xiao, Xiaojun ;
Jiang, Lijuan ;
Liu, Zhigang ;
Zeng, Xiaowei ;
Mei, Lin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (45)
[10]   Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo [J].
Cheng, Xiaju ;
Sun, Rui ;
Yin, Ling ;
Chai, Zhifang ;
Shi, Haibin ;
Gao, Mingyuan .
ADVANCED MATERIALS, 2017, 29 (06)