On r-uniform linear hypergraphs with no Berge-K2,t

被引:0
作者
Timmons, Craig [1 ]
机构
[1] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
关键词
hypergraph Turan problem; Sidon sets; Berge-K-2; K-t; 3-UNIFORM HYPERGRAPHS; TURAN NUMBERS; ODD CYCLE; LENGTH; GRAPHS; TRIANGLES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an r-uniform hypergraph and G be a multigraph. The hypergraph F is a Berge-G if there is a bijection f : E(G) -> E(F) such that e subset of f(e) for each e is an element of E(G). Given a family of multigraphs G, a hypergraph H is said to be G-free if for each G is an element of G, H does not contain a subhypergraph that is isomorphic to a Berge-G. We prove bounds on the maximum number of edges in an r-uniform linear hypergraph that is K-2,K-t-free. We also determine an asymptotic formula for the maximum number of edges in a linear 3-uniform 3-partite hypergraph that is {C-3, K-2,K-3}-free.
引用
收藏
页数:15
相关论文
共 16 条
  • [1] Turan numbers of bipartite graphs plus an odd cycle
    Allen, Peter
    Keevash, Peter
    Sudakov, Benny
    Verstraete, Jacques
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 : 134 - 162
  • [2] Many T copies in H-free graphs
    Alon, Noga
    Shikhelman, Clara
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 146 - 172
  • [3] Pentagons vs. triangles
    Bollobas, Bela
    Gyori, Ervin
    [J]. DISCRETE MATHEMATICS, 2008, 308 (19) : 4332 - 4336
  • [4] COLLIER-CARTAINO C., COMBIN PROBAB COMPUT
  • [5] New asymptotics for bipartite Turan numbers
    Furedi, Z
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 75 (01) : 141 - 144
  • [6] On 3-uniform hypergraphs without a cycle of a given length
    Furedi, Zoltan
    Ozkahya, Lale
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 582 - 588
  • [7] EXTREMAL RESULTS FOR BERGE HYPERGRAPHS
    Gerbner, Daniel
    Palmer, Cory
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2314 - 2327
  • [8] Gyori E., 2010, Electronic Notes in Discrete Mathematics, V36, P655
  • [9] 3-uniform hypergraphs avoiding a given odd cycle
    Gyori, Ervin
    Lemons, Nathan
    [J]. COMBINATORICA, 2012, 32 (02) : 187 - 203
  • [10] Hypergraphs with no cycle of length 4
    Gyori, Ervin
    Lemons, Nathan
    [J]. DISCRETE MATHEMATICS, 2012, 312 (09) : 1518 - 1520